# Data Scrubbing and Rebuild Using Offload

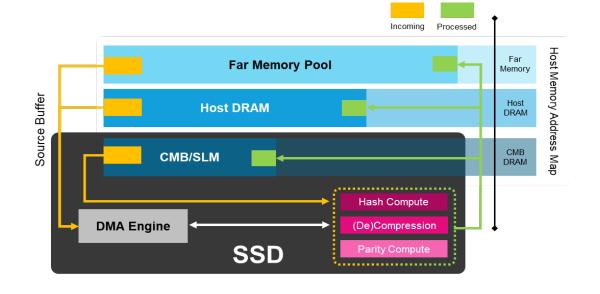
Aug 7, 2025 Devesh Rai KIOXIA America, Inc.





# **Host Orchestrated Compute Offload Building Blocks**




Power-efficient compute engines

DRAM bandwidth saving

Host orchestrated standard based

#### **Applications of Offload Engines**

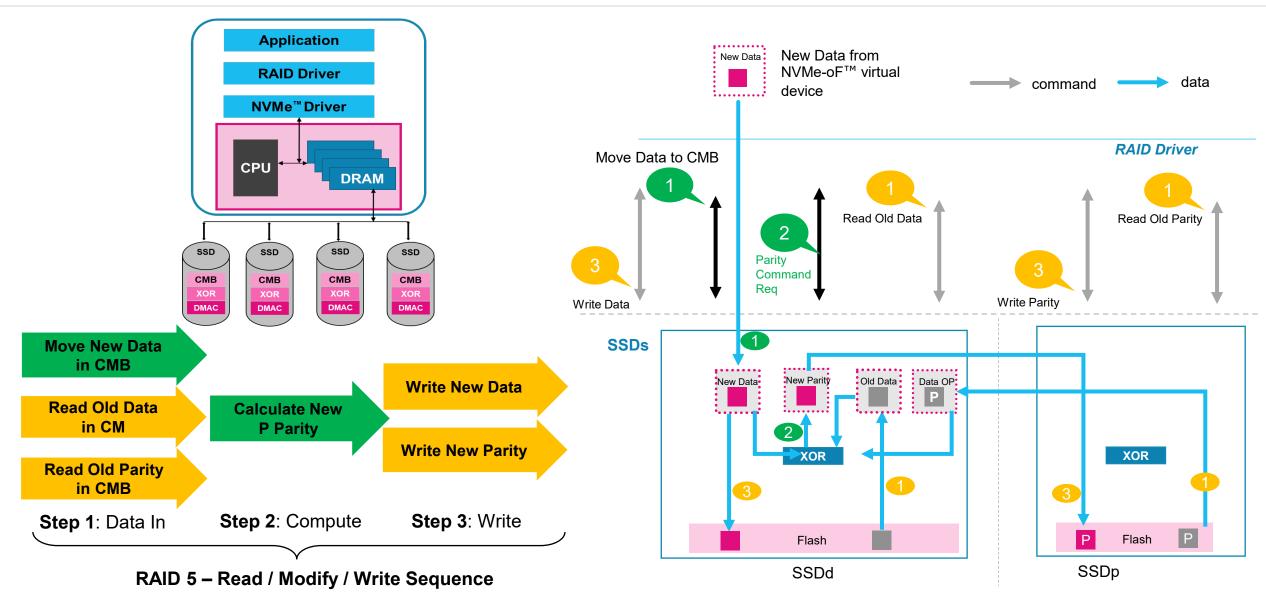
- **Hash/CRC**<sup>3</sup>: Dedupe, Object/File signature/scrubbing, buffer integrity
- ☐ (De)Compression: Compression with levels, decompress and filter
- ☐ Parity Compute: Erasure code (EC), compare, Data scrubbing, RAID Rebuild



Host places data in appropriate buffer (host memory/ far memory/ CMB¹)

Host issues command to the SSD

Compute engine on the SSD executes the command


Processed data is placed into the destination buffer

Command completion returns key attributes



## **Command and Data Flow Example for RAID 5 Write**





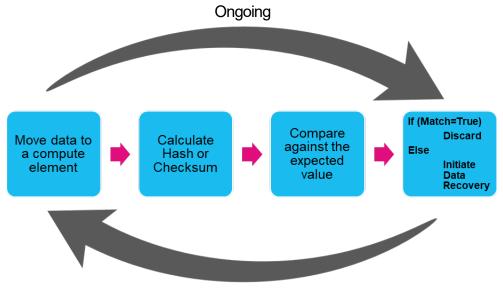


# Fail in Place Mechanism at the SSD Level

### **KIOXIA** Built-in SSD Level Failure Mitigation



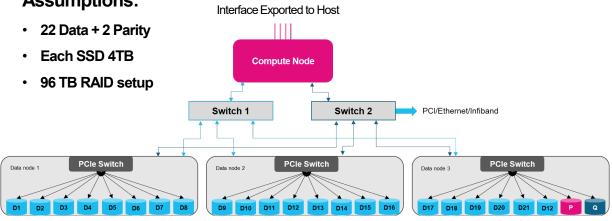
| Failure Mitigation Features                | Description                                                                                                                          |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Wear Leveling                              | Internally developed "Always on" algorithm to allow even media wearing                                                               |
| Die Fail Tolerance and Recovery            | Enterprise and data center SSDs historically supports die fail tolerance and recovery                                                |
| Customizable End-of-Life Behavior          | When and what actions to take upon reaching certain thresholds                                                                       |
| Overprovisioning (OP) and Available Spare  | Available Spare, critical warning in SMART <sup>1</sup> / health information  Read Only mode if spare capacity falls below threshold |
| Dual-Port Functionality in Enterprise SSDs | Ensures high availability in case of path failure                                                                                    |


Data verification mechanism still required to ensure data integrity at File/Object/Stripe level.

# Data Scrubbing Using Offload

### Data verification using Data Scrubbing in Conventional Setup




- Data Scrubbing: Early detection and correction of errors
- Method employed: Hash, checksum or RAID technology
- Supported Level: File, Object and RAID Stripe



Regular Cadence

All data movement during scrubbing operation is an overhead penalty paid to ensure data integrity

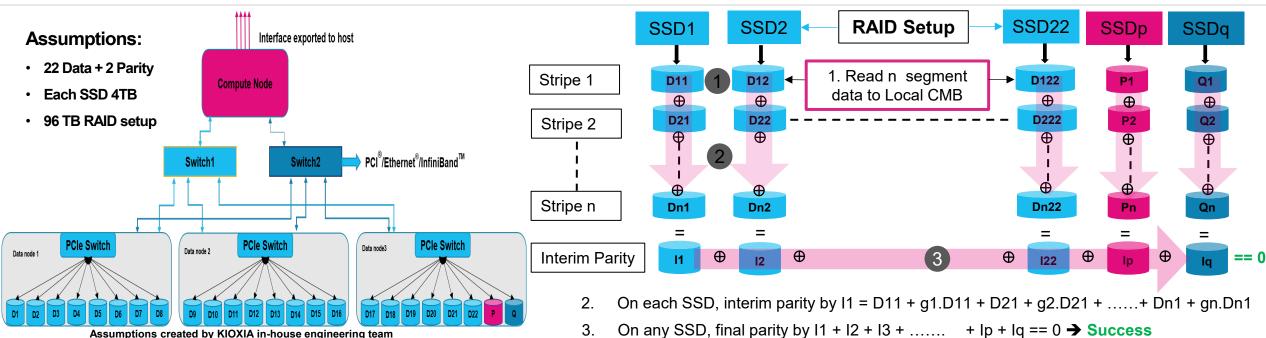
#### **Assumptions:**



#### Compute node performing data and parities verification for one stripe using RAID

2. 
$$Q + g1.D1 + g2.D2 + g3.D3 + .... + g22.D22 = 0$$

#### For each Scrubbing Cycle:


- 96TB data moves over PCIe<sup>®</sup>, network and CPU
- 192TB through memory subsystem

Assumptions created by KIOXIA in-house engineering team.



## Error Detection using Data Scrubbing with RAID/EC Offload





- Using 3 step process, system resource usages reduced by ~99%
- No data passes through CPU and DRAM on compute node
- For n stripes, only one stripe moves over network and PCIe<sup>®</sup>
- A sustainable and scale out solution
- Dnm=> Data segment D of nth stripe on SSDm

| System Resources to Scrub 96 TB (subject to change) | Conventional<br>Method | KIOXIA Data<br>Scrubbing<br>Offload | % of<br>Savings |
|-----------------------------------------------------|------------------------|-------------------------------------|-----------------|
| Data passes through CPU for parity computation      | 96 TB                  | 0 TB                                | 100%            |
| Data passes through DRAM controller                 | 192 TB                 | 0 TB                                | 100%            |
| Data passes through network                         | 96 TB                  | 0.4 TB                              | 99%             |
| Data passes through PCIe® interface                 | 96 TB                  | 0.4 TB                              | 99%             |

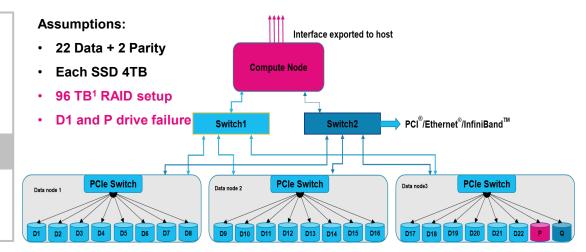
#### A very flexible, geometry agnostic and adoptable solution for early error deduction



# Rebuild Using RAID Offload

### Efficient Rebuild of 2 SSDs using RAID offload




- 1. Read good data segments of one RAID strip on compute node
- 2. Compute these two equations in order

a. 
$$D1 = (g2.D2 + g3.D3 + .... + g22.D22 + Q)/g1$$

b. 
$$P = D1 + D2 + D3 + D4 + D22$$

Without offload

- 3. Write D1 and P to new SSDs on respective stripe
- 4. Repeat steps 1-3 for each RAID stripe generation



- 1. Read Dm to Dn segments in the CMB of one SSD in each data node
- 2. Calculate node specific intermediate data  $D_{in}$  and parity  $P_{in}$ . For example, on node 1

1. 
$$P_{i1} = D2 + \dots + D8$$

2. 
$$D_{i1} = (g2.D2 + ..... + g8.D8) / g1$$

3. Read intermediate data  $D_{in}$  and parity  $P_{in}$  from each data node on compute node and compute D1 followed by P parity

1. 
$$D1 = D_{i1} + D_{i2} + D_{i3}$$

2. 
$$P = D1 + P_{i1} + P_{i2} + P_{i3}$$

With offload

- 4. Write P and D1 to new SSDs on respective stripe
- 5. Repeat steps 1-4 for rebuilding each RAID stripe

| System Resources to build two drives (subject to change <sup>2</sup> ) | Conventional<br>Method | KIOXIA Data<br>Rebuild with<br>Offload | % of<br>Savings |
|------------------------------------------------------------------------|------------------------|----------------------------------------|-----------------|
| Data passes through CPU for parity computation                         | 88 TB                  | 24 TB                                  | 73%             |
| Data passes through DRAM controller                                    | 192 TB                 | 64 TB                                  | 66%             |
| Data passes through network                                            | 96 TB                  | 32TB                                   | 66%             |
| Data passes through PCIe® interface                                    | 96 TB                  | 108TB                                  | -12%            |

Rebuild with offload can saturate write line speed



# **Summary**



- SSD level data loss mitigation to
  - Avoid rebuild process specially with high-capacity SSDs
  - Recovery of data even in case of die failure
- Efficient data scrubbing method to detect failure early while saving significant system resource cost
- Efficient rebuild process saving significant system resource cost and time
- Data scrubbing and rebuild is based on <u>KIOXIA RAID Offload Technology</u>, and '<u>Best of Show</u>' award winner at the Future of Memory and Storage (FMS) 2024 conference

# KIOXIA

| Definition of capacity: KIOXIA defines a megabyte (MB) as 1,000,000 bytes, a gigabyte (GB) as 1,000,000,000 bytes and a terabyte (TB) as 1,000,000,000,000 bytes. A computer operating system, however, reports storage capacity using powers of 2 for the definition of 1GB = 2^30 = 1,073,741,824 bytes and therefore shows less storage capacity. Available storage capacity (including examples of various media files) will vary based on file size, formatting, settings, software and operating system, such as Microsoft Operating System and/or pre-installed software applications, or media content. Actual formatted capacity may vary. |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| All company names, product names and service names may be trademarks of their respective companies.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Images are for illustration purposes only.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| © 2025 KIOXIA America, Inc. All rights reserved. Information, including product pricing and specifications, content of services, and contact information is current and believed to be accurate on the date of the announcement, but is subject to change without prior notice. Technical and application information contained here is subject to the most recent applicable KIOXIA product specifications.                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |