A Second Life for Flash With Page Isolation

M. Ceylan Morgul, Ph.D. and Mircea Stan, Ph.D. University of Virginia, USA

Problem

Flash Memory – we still depend on it

- Sustainability and Reliability
- Endurance limitation: wear-out by using (Program/Erase cycling)

- System-level and Device-level mitigation techniques
 - over-provisioning, wear-leveling, read-retry, etc. Active or Passive Recovery
- Can "bad" blocks be reused?

Page Isolation: enables the use of pages after life

Outline

- We like Flash Memory
- [Device] Reliability of Flash
- [Circuit] Program Interference
- Page Isolation
- Experimental Results
- [System] SSD FTL Implementation
- Conclusion

Reliability of Flash

- Electrons are forcibly moved during Program and Erase operations
- Stress shifts and widens or only shifts threshold voltage pdf

- Cells are not independent
- Cell-to-cell interference is reported as dominant factor [1]

Threshold

Probability

[1] Park, Ki-Tae, et al. "A zeroing cell-to-cell interference page architecture with temporary LSB storing and parallel MSB program scheme for MLC NAND flash memories." *IEEE JSSC 2008*

Page Isolation

<u>ldea:</u>

- Using some pages for isolation to mititgate page interference (and read disturb)
- Enables usage of blocks (pages) otherwise declared as «bad»
- Calibrate read current for low_level-to-high_level errors

the Future of Memory and Storage

2-

Page

iso.

Prog.

Experimental Setup

- 2D SLC NAND floating gate
- 3D TLC NAND charge trap
- no-ECC and no read-retry
- Data-0 and Random Data
- Tested at different temperatures

Page Isolation Enhances Reliability – 2D

- Page isolation reduces the error rate
- Presents additional the lifetime

Regular Cycling at 50°C

1-Page-Iso Cyc. at 50°C

the Future of Memory and Storage

Life After Death with Page Isolation – 2D

- 50% of pages gets 3.5x extra life
- 33% of gets more than 7.7x

the Future of Memory and Storage

Read Disturb vs Program Interference – 2D

- 2.4x lifetime improvement with Read Disturb mitigation
- 2.3x lifetime improvement with equalized Read Disturb

1-Page-Iso Cycling at 50°C

Retention and High Temperature – 2D

Low (zero) error rate even at high temperature retention error

It still ages: Cycling Latency – 2D

 7.7x translates to 6.6x lifetime improvement for performance demanding applications

Page Isolation at 50°C

Life After Death with Page Isolation – 3D vs 2D (wip)

 3D benefits Page Isolation less than 2D because of higher dependency – Increasing number of isolation page is needed

3D - Regular Cycling at 25°C

SSD FTL (Flash Translation Layer) Implementation

Conclusion

- Page Isolation:
 - For already aged blocks
 - At 50°C, 3.5x lifetime for half of the capacity
 - >6x lifetime for 1/3 of the capacity
 - At 25°C -> 1.3x
 - Easy to implement in SSD FTL
 - Reduces the capacity loss, which happens due to reliability (and the waste)

Acknowledment

- I would like to thank my Ph.D. advisor Mircea Stan, University of Virginia.
- I would like to thank Matchima Buddhanoy and her advisor Biswajit Ray, Colorado State University, USA, for 3D NAND Flash Experiments.
- This work was supported in part by Semiconductor Research Corporation (SRC) under the Center for Research on Intelligent Storage and Processing in-memory (CRISP).
- Original Paper is published in IIRW 2024

