Taking NAND Past End-of-Life: Dynamic NAND Recovery

Cloud Zeng, Phison Electronics
Ilia Maller, Phison Electronics

Exceeding Enterprise SSD Reliability/Performance Requirements

Phison Enterprise SSD – best in class reliability

- Fast Performance Recovery
- Unlimited Power-On Reliability
- Strong QLC Support
- Stable Performance from BOL to EOL
- Up to 11K P/E for cTLC, 3K P/E for cQLC
- Exceeds JEDEC/Customer Requirements

Patented Features:

- Optimal Read Level Search (2 patents)
- Efficient Tracking Process (1 patent)
- Instant Read Performance Monitoring (1 patent)
- Refresh (Extra PE) Overhead Reduction (1 patent)
- Runtime Retry Table Management (1 patent)
- Recovery Sequence Escape/Swap (1 patent)
- Quick Tracking Correction (1 patent)

Dynamic NAND Recovery

- Error Accumulation Mechanisms:
 - Read disturb
 - Program/Erase Cycles
 - Cross-temperature: write at high read at low (HWLR)
 or write at low read at high (LWHR)
 - Retention
- Design Goals:
 - Reduce number of read errors bits
 - Increase correction capabilities

Dynamic Recovery Sequence

Design Goal: Maintain a low retry trigger rate and minimize recovery steps

Predictive Quick Tracking Correction

- Read level may drift due to PE cycles or retention; update it before accessing the memory unit
- If most units last tracked at the blue point are now recovered at the red point, a significant read level shift has occurred
- Stable Retry Trigger Rate: 1e⁻⁵ to 1e⁻⁶

Dynamic Retry Sequence

- Not all retry table entries are equally useful: manage retry table in runtime
 - Add new entries if a better read level is discovered
 - Delete entries that no longer improve decoding
 - Reprioritize entries to reduce total retry steps
- Average Read Retry Trials: 1.06

Runtime Read Level Tracking

Design Goal: Execute every read command with (near-)optimal read level

Optimal Read Level Search

- Works for all types of NAND and operation conditions
- Supports any die variation using runtime-generated retry table

Runtime Read Level Tracking

- Periodically records the read level of each memory unit (wordline, block, plane, or die)
- With short tracking intervals, the overhead remains low
- Quick Tracking Correction and the Dynamic Recovery Sequence help reduce reliance on full Read Level Search
 - Search trigger rate: 1e⁻⁵
- Read Level Prediction keeps tracking overhead low
 - Average tracking read count for each page: 1.12

Unlimited Power-On Reliability

- No reads scenario is the worst-case, since no runtime decode statistics can be collected
 - Time-based tracking is required
- Data is relocated before error bits exceed the control threshold
- With short tracking intervals (< 1 day), error accumulation is well controlled

50x Read Disturb Spec PE 11K + Read Disturb 1 Day (High Stress) Read Performance 15000 14000 13000 12000 \$11000 MB 10000 9000 8000 7000 6000 24 Hours 1st Loop 2nd Loop Read Loop

Power-on retention: no reliability risk

Read disturb : no reliability/performance risk

Fast Read Performance Recovery

- Dynamic Recovery Sequence ensures fast and stable read performance
- Recovery verified under worst-case PE + retention combinations:
 - Power-off retention (3 months)
 - Power-on retention (1 week)
 - Cross-temp LWHR (0→70°C) and HWLR (70→0°C)
- Performance recovers within 1–2 read loops in all cases

Strong QLC Support

- QLC exhibits more error bits and a faster increase in error rate under stress
 - Dynamic Recovery Sequence shows significant advantage/gain in QLC
 - Data is relocated to recover performance
- To reduce extra P/E cycles, refresh granularity is minimized
 - Refresh overhead reduced by ~ 1,000×

Memory Unit

•						
	Die0		Die1			
	P0	P1	P0	P1		
VB0						
VB1						
VB2						
VB999						

BOL + Power-Off Retention 3Y

Controller NAND Flash		1st Loop Read Performance	
Phison E27	QLC-A	1327 MB/s	
Company-A	QLC-A	44 MB/s	
Company-B	QLC-A	4.8 MB/s	

Controller	NAND Flash	1st Loop Read Performance
Phison E27	TLC-A	5378 MB/s
Company-B	TLC-A	839 MB/s

Stress Benchmark: Read Performance Recovery

- Benchmark simulates worst-case NAND degradation:
 - BOL + Cross Temperature
 - 1-year retention
 - Read Disturb
 - Continuous reading for 24 hours
- Results:
 - Phison X200: Drop 0.5 %
 - Company-A: Drop 9%~14%, no recovery
 - Company-B: Drop 13%, no recovery

Summary

Phison Enterprise products meet or exceed JEDEC and customer reliability requirements — with up to 11K PE for cTLC and 3K PE for cQLC.

Phison's patented Dynamic Recovery Sequence, Runtime Read Level Tracking, and Optimal Read Level Search enable:

- Fast performance recovery
- Unlimited power-on reliability
- Strong QLC support
- Stable performance from BOL to EOL

Have questions?

- Contact us at <u>Phison Enterprise</u>
- Learn more on the **PHISON** Blog

Learn more about Phison Enterprise Storage

PHISON

Thank you

