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Fig: Video streamer Application Pipeline
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Face Recognition Pipeline
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Complex Solution impacts Storage Performance
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It’s All About the Use Case

* Al/ML storage systems encompass a wide range of requirements and
architectural complexities.

* Data Pipeline varies by each use case and model used

* Each use case has different overall architecture.
e Software Stack — framework, application and library
* Data set
* Model
* Training Parallelism
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Ingest Phase

e Source data is different for each use case.
* File / Block / Object Storage.
» Parquet, CSV, JSON,image files, etc...

e Source data can be static, based in very slow tiers.
 LLM, Image Search, etc...
* Data is prepared Offline and put into the pipeline.

e Source also can be real time devices.
* Facial / Defect Recognition
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Train - Model Sharding / Parallelism

* Tensor
 Splits individual weight tensors into multiple chunks on different devices.
* Pipeline

 Partitions the model vertically into stage by layers. Different devices can
process in parallel different stages of the full model.

* Context

* Divides the input context into segments, reducing memory bottleneck for
very long sequence length inputs.

e Data parallelism

* Full model is inserted in each device HBM, and data is processed in parallel in
multiple devices. Synchronization happens after each train step.
PR
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TRAIN - Checkpoint

* Checkpoint size is the model size plus model and Optimizer state.

* Model size is set by parameter and precision.
* FP32 = 4Bytes
* FP16 = 2Bytes

* Model State is added to checkpoint size.
* Normally 2 states are saved.
* Each state has the same number of parameters and normally with the same
precision.

* Checkpointing saved as one or more files is based on the model parallelism
and implementation

* The higher the GPU count utilized, the higher the checkpoint frequency.
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Inference |0 Profile — LLM —Llama 3
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Why Storage Matters in Inference
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Modern storage overcomes memory constraints to enable larger models, longer interactions, and better outputs
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Summary

* Al/ML storage systems encompass a wide range of requirements and
architectural complexities

* |O characteristics (10 size, Read/write ratio, Queue Depth, threads)
depends on the model, framework, Data set and Training parallelism,
type of storage

* There is no one size fits all; storage needs to be selected based on the
usage case scenario
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The Solidigm Advantage in the Al Data Pipeline
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Performance Leaderboard

Multi-Node Competitor
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Solidigm D7-PS1010 offers the highest

throughput based on the latest MLPerf

2.0 measurement results submitted, for
3D-UNET model training carried out by

farm GPU.

Redefining Al Storage Economics: A Deep
Dive into Single-Node Performance and
System-Level Optimization
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