IO Characteristics of AI models and Workloads

Aug 7th 2025 Kiran Bhat, Product Manager, Solidigm Alessandro Goncalves – Solution Architect, Solidigm

Data pipeline and Storage

Video Streamer - Pipeline

Fig: Video streamer Application Pipeline

Face Recognition Pipeline

Fig: Face Recognition Application Pipeline

Census - Pipeline

Fig: Census application pipeline

Complex Solution impacts Storage Performance

Al Framework Stack and Data Flow

Source:

https://snia.org/sites/def ault/files/ESF/AI-Storage-The-Critical-Role-of-Storage-in-Optimizing-AI-Training-Workloads.pdf

It's All About the Use Case

- AI/ML storage systems encompass a wide range of requirements and architectural complexities.
- Data Pipeline varies by each use case and model used
- Each use case has different overall architecture.
 - Software Stack framework, application and library
 - Data set
 - Model
 - Training Parallelism

Ingest Phase

- Source data is different for each use case.
 - File / Block / Object Storage.
 - Parquet, CSV, JSON, image files, etc...
- Source data can be static, based in very slow tiers.
 - LLM , Image Search, etc...
 - Data is prepared Offline and put into the pipeline.
- Source also can be real time devices.
 - Facial / Defect Recognition

Train - Model Sharding / Parallelism

Tensor

Splits individual weight tensors into multiple chunks on different devices.

Pipeline

 Partitions the model vertically into stage by layers. Different devices can process in parallel different stages of the full model.

Context

 Divides the input context into segments, reducing memory bottleneck for very long sequence length inputs.

Data parallelism

 Full model is inserted in each device HBM, and data is processed in parallel in multiple devices. Synchronization happens after each train step.

TRAIN - Checkpoint

- Checkpoint size is the model size plus model and Optimizer state.
- Model size is set by parameter and precision.
 - FP32 = 4Bytes
 - FP16 = 2Bytes
- Model State is added to checkpoint size.
 - Normally 2 states are saved.
 - Each state has the same number of parameters and normally with the same precision.
- Checkpointing saved as one or more files is based on the model parallelism and implementation
- The higher the GPU count utilized, the higher the checkpoint frequency.

Inference IO Profile – LLM –Llama 3

Why Storage Matters in Inference

Modern storage overcomes memory constraints to enable larger models, longer interactions, and better outputs

Summary

- AI/ML storage systems encompass a wide range of requirements and architectural complexities
- IO characteristics (IO size, Read/write ratio, Queue Depth, threads)
 depends on the model, framework, Data set and Training parallelism,
 type of storage
- There is no one size fits all; storage needs to be selected based on the usage case scenario

The Solidigm Advantage in the Al Data Pipeline

Solidigm D7-PS1010 offers the highest throughput based on the latest MLPerf 2.0 measurement results submitted, for 3D-UNET model training carried out by farm GPU.

Redefining Al Storage Economics: A Deep
Dive into Single-Node Performance and
System-Level Optimization

Backup

References

- Al Pipeline Optimization on Xeon® Processors | Intel®
- [2108.09373] Understanding Data Storage and Ingestion for Large-Scale Deep Recommendation Model Training

