Feeding the Beast

Bridging **NVMe** Storage and **GPUs** while Preserving **File** Semantics

Simon A. F. Lund | Principal Engineer Samsung Semiconductor

Systems Architecture: context

- NVMe Storage with NAND media
 - PCIe, TCP, RDMA/RoCe, Infiniband
 - 128 to 8K Queues per controller
- CPU with DDR memory
 - **128** Threads
- GPU with HBM memory
 - **100K+** Threads

BW: NAND < DDR < HBM

Challenges: data access latency HW

Challenges: data access latency SW

- Databases
 - SQL, KV, Vector, Object, ..., Time Series
 - → Data query interfaces

- Files & File-systems
 - File-formats and layout
 - Block allocation and management
- Blocks and Block Devices
 - Storage device and media abstraction

Challenges: state of the art

Benchmark tools:

gdsio, bdevperf, nvm-block-bench

- SPDK and BaM
 - + Optimal performance
 - Files / file-system

- GDS
 - Subpar performance
 - + Files / file-system

Path to GPU-Initiated I/O for Data-Intensive Systems https://dl.acm.org/doi/10.1145/3736227.3736232 Paper at SIGMOD / DaMoN25

Challenges: state of the art

Benchmark tools: gdsio, bdevperf, nvm-block-bench

- SPDK and BaM
 - + Optimal performance
 - Files / file-system

- GDS
 - Subpar performance
 - + Files / file-system

Goal → Close the perf. gap!

Path to GPU-Initiated I/O for Data-Intensive Systems https://dl.acm.org/doi/10.1145/3736227.3736232 Paper at SIGMOD / DaMoN25

AiSiO: Accelerator Initiated Storage IO

AiSiO: Status

Benchmark tools:

gdsio, bdevperf, nvm-block-bench xNVMe/SIL **file-loader** benchmark

- Gap reduced
 - Proximity to performance of BaM
 - Achieve 22.1% of BaM with GDS
 - Achieve 88.5% of BaM with AiSiO
 - A 3.9x improvement!
- Supports file operations
- Interoperable
- Open Source
- Work in progress
 - Aiming to close the gap!
 - Compute-kernel implementation.
 - Compute-kernel NVMe Driver

Path to GPU-Initiated I/O for Data-Intensive Systems https://dl.acm.org/doi/10.1145/3736227.3736232 Paper at SIGMOD / DaMoN25

AiSiO: Status

- Gap reduced
 - Proximity to performance of BaM
 - Achieve 22.1% of BaM with GDS
 - Achieve 88.5% of BaM with AiSiO
 - A 3.9x improvement!
- Supports file operations
- Interoperable
- Open Source
- Work in progress
 - Aiming to close the gap!
 - Compute-kernel implementation.
 - Compute-kernel NVMe Driver

Community and Industry Requests

- Linux interoperability for safety
 - File-locking and leases

- Linux DMA buffer
 - Common API for accelerator memory allocation for P2P and Zero-Copy
- Accelerator support

Feeding the Beast

Bridging **NVMe** Storage and **GPUs** while Preserving **File** Semantics

Simon A. F. Lund | Principal Engineer Samsung Semiconductor

