

UALink: Why Now?

UALink Emerges as a Leading Standard for Scale Up Architectures

Mike Hendricks

AVP Solutions Marketing & Ecosystem Partnerships

FMS – August 7, 2025

Astera Labs & Speaker Introduction

Signal Conditioners & Smart Cable Modules

Taurus Ethernet

Libra UALink

Smart **Fabric Switches**

Scorpio PCIe/UALink

Smart Memory Controllers

- Speaker: Mike Hendricks
- Role: AVP Solutions & Ecosystem

- Amazon
- Intel / Altera (FPGA)
- Texas Instruments / National Semi
- Previous Roles:
 - GM / Business Unit Lead
 - **Business Development**
 - Product Marketing / Management

Why Now for an Open Scale-up Connectivity Solution?

General Compute Servers

Source: HPE

- 2 to 8 CPUs scaled-up
- In-the-box
- Proprietary, CPU-to-CPU
- Simple memory semantics

Al Servers

Source: AMD

- 8 GPUs scaled-up
- In-the-box
- Proprietary, GPU-to-GPU
- Simple memory semantics

Al Server → Rack (aka Pod)

Source: Supermicro

- $36/72 \rightarrow 576 \rightarrow 1Ku+(!)$ GPU/XPUs
- In-the-box → rack & rack-to-rack
- Proprietary or Ethernet-based w/ switch(!)
- Simple memory semantics OR more complex network semantics?

Modern AI infrastructure requires an open, multi-processing rack-level scale-up solution

UALink Stack & Features

- Purpose built for scale-up
- Low latency
- High bandwidth
- Memory semantic
- Direct load, store, atomic operations
- Up to 1K accelerators in a pod

UALink TL / DL Features & Goals

- Fixed Payloads (64B/640B)
- Virtual Channels
- Link Layer Retransmission (LLR)
- Credit-Based Flow Control
- Same address ordering
- Target Low Latency Operation
 - cable length < 4 meters
- Req-To-Resp RTT < 1μs
- 1-4 racks
- end points <= 1K
- Requests & Responses for Multiple src <-> dst pairs can be packed together
- E2E Encryption & Authentication

IEEE P802.3dj Layer 1

- Standard FEC
- Lower latency via 1-way and 2way code word interleave
- Minor tweaks for 680-Byte FLIT code word alignment

Solution

Challenge

EMS

Why Now: Al Scale-Up Connectivity Challenges and Solutions

Today's Discussion

UALink addresses the critical scale-up connectivity challenges for next generation AI infrastructure deployment

UALink: Purpose Built for Scale-up Application

Memory Semantics vs. Network Semantics

Feature	Memory Semantics	Network Semantics
SW development Model	Shared memory (load/store)	Message passing (send/receive)
Messaging Type	Implicit – data only, no protocol	Explicit – requests and defines information
Memory Access	Simple - avoid DMA engine and network stack	Complex – must program DMA engine and network stack
BW Utilization	High utilization - no addressing/routing	Lower utilization due to addressing/routing overhead
Access Latency	Low latency - direct access to remote memory	Higher latency - serialization, pack/unpack, messaging
Common Use Cases	Scale up - Connectivity within a node	Scale out - connectivity between nodes
	High-speed, real-time applications	Non-time critical; large amounts of data
	Shared context in parallel compute	Exchange context between compute units
Value	Memory-vs-time trade-offs	Add / remove individual nodes
	In network compute (INC)	

UALink is the only **OPEN** standard with memory semantics

Data Transfer Flows in SW/HW Stack

Memory Semantics Stack

Application

(Memcpy, malloc, implicit mem accesses, ...)

Compiler Optimization

(GCC, CUDA, ...)

Memory Management

(Local Mem, Remote Mem, Devices, ...)

Connectivity Devices

(UALink, NVLink, PCIe, ...)

- Simple and Low Latency Stack
- Small/Flexible/Implicit Transfers
- Optimized for parallel processing transfers

Network Semantics Stack

Application

(Pytorch, TensorFlow, ...)

Collective Libraries

(*CCL, MPI, ...)

Network Libraries

(Libibverbs, ...)

Memory Management

(Page pinning, page faults, memory regi, ...)

Network Device Driver

Network Devices

(SmartNIC, RoCE/RDMA offload, ...)

- Complex and Higher Latency Stack
- **Explicit** Transfers
- Optimized for large DMA transfers

Store Example

Native Memory Semantics

One Step:

1. Local & Remote memory: XPU Store (same for both)

Network Semantics

Multiple Steps:

- 1. Local memory: XPU Store
- 2. Remote memory:
 - a) Initiate send
 - b) Networking message protocol
 - c) Data transfer

Ultra Accelerator Link™ (UALink™) Consortium

- Open, standard, accelerator-to-accelerator communication
- Simple memory semantic based protocol up to 1Ku nodes
- Single-tier switch and cluster management
- Data rates of Ethernet, low latency of PCIe, low power
- Lower TCO & fast time-to-market

Call to Action: Download UALink 1.0 specification and join the UALink Consortium!

