Evolving UALink and UEC as the Gold Standard for Accelerator Connectivity in Al

Pankaj Goel

Associate Director, Siemens EDA

Questa One Avery VIP

Agenda

Al-Driven Demand for High-Speed Connectivity

Explosion of AI models require massive parallel compute (GPT4 has ~1 trillion parameters). Al clusters scale to 1000s of accelerators traditional interconnects are a bottleneck in that. Al training bandwidth demand doubles ~every 6 months Ultra-low latency is essential High bi-directional bandwidth to overcome bottleneck Coherent memory access across GPUs and CPUs for efficiency High-speed, low-latency, scalable connectivity is essential need

Worldwide Data Centre Computing Forecast, Accelerated and Non-Accelerated

Popular High Speed connectivity Today

Technology	Latency	Bandwidth	Scope	Topology	Vendor Lock-in	Use Case
PCI Express (PCIe 5/6)	150–300 ns	~64 GB/s (Gen5 x16) / 128 GB/s (Gen6 x16)	$CPU \longleftrightarrow Device$	Point-to-point	Open Standard	General compute, GPUs, storage
NVLink (v4/v5)	~50–80 ns	~200 Gbps per link (v5), ~900 GB/s total	$GPU \longleftrightarrow GPU$	Mesh/Full mesh	Vendor Locked	Al training clusters
Infinity Fabric	~100 ns	64–128 GB/s	CPU ↔ Device ↔ Memory	Ring or Mesh	Vendor Locked	CPU-GPU- DRAM sharing
Scale-Up Ethernet (SUE)	~500 ns	400–800 Gbps	Pod-scale	Tree/Leaf-Spine	Vendor Locked	AI accelerator networks
* UALink	<100 ns (pin- to-pin), ~250 ns end-to-end	200 Gbps/lane (x4 = 800 Gbps per port)	$GPU \longleftrightarrow GPU, NPU \longleftrightarrow NPU$	Fully connected mesh or hybrid ring	Open Consortium	Scale-up AI pods, shared memory fabrics
★ UEC (Ultra Ethernet Consortium)	~500 ns–1 μs	Multi-Tbps	$Pod \longleftrightarrow Pod$, $Cluster \longleftrightarrow Cluster$	Leaf- spine/Ethernet	Open Consortium	Scale-out, datacenter- wide AI workloads

Unified Vision: UALink & UEC

UALink

- The UALink interconnect is for Accelerator-to-Accelerator communication
 - The initial focus will be sharing DDR & HBM memory among accelerators
- Direct load, store, and atomic operations between accelerators (i.e. GPUs)
 - Low latency, high bandwidth fabric for 100's of accelerators in a pod
 - Simple load/store/atomics semantics
- Supports data rates of 128Gbps and 200Gbps per lane

UALink stack

<u>Ethernet</u>

PCle

UALink: Architectural Edge

Memory-semantic Fabric

• Direct load/store/atomic between GPUs; pod can appear as a single large-memory accelerator .

Low latency & high bandwidth

- 200 Gbps per lane; 4-lane "Station" = 800 Gbps full duplex
- Switch latency: < 300 ns at full scale

Protocol stack

• Layered: physical (Ethernet PHY), data link (FEC, flow-control, replay), transaction (64 B flits), protocol (load/store)

Security

• Encryption/Authentication protects against hardware attacks

Scalability

- Supports up to 1,024 accelerators in a single pod
- Bandwidth efficiency: 88→95% via compression, efficient flit packing, FEC optimizations
- Power-saving: optimized protocol stack and PHY reduce die area and interconnect power by ~40%

UALink Roadmap

UALink Verification Use Case

- VIP Vendor (Avery VIP) provides modular components
- Any component can be replaced by VIP or DUT
- Dedicated & clean connection
- In built Tests and Checks for compliance
- Coverage for spec completeness

Ultra Ethernet (UE): Standardization Ecosystem

Open protocol built to run over IP and Ethernet

Multipath, packet-spraying delivery avoids congestion and eliminates need for central load balancing

Incast control manages fan-in on final link with minimal drops

Efficient rate control ramps to wire-rate without impacting other flows

APIs support both out-of-order and inorder delivery reducing latency and boosting concurrency

Scales to Million endpoints for future networks

Delivers performance without tuning congestion algorithms for specific workloads

Ultra Ethernet Transport

The Ethernet Advantage

Many large accelerators clusters for AI training already run on Ethernet-based IP networks

- Broad, multi-vendor ecosystem of switches, NICs, cables, optics, tools, and software
- Scalable IP routing for rack, building, and datacentre-wide networks
- Wide range of tools for testing, deployment, and operations
- Lower costs via competition and economies of scale
- Rapid, regular advancements through IEEE
 Ethernet standards across physical and optical layers

Ethernet vs Ultra Ethernet

UEC

Ultra Ethernet Verification Use model

- VIP Vendor (Avery VIP) provides modular components
- Components can be VIP or DUT
- Configurable port speeds from 100G to 1.6T
- Dedicated & clean connection
- In built Tests and Checks for compliance
- Coverage for spec completeness

UEC Specification Rollout

Industry Adoption Trends

Strong Industry Backing

- Founding members: AMD, Intel, Broadcom, HPE, Cisco

VIP Support

- Example: Siemens EDA Avery VIP announced UALink VIP

IP Availability

- Vendors offer controller + PHY IP

Switch Silicon Development

- Companies like Broadcom, Marvell working on UALink-compliant switches
- Potential for custom PHY + MAC

Software Ecosystem

- Early tools and drivers available
- Reference implementations on GitHub

Future Outlook

Both UE and UALink are going to play crucial role in AI/ML infrastructure

Expected significant adoption of UEC by data centers by 2027

Ultra Ethernet support for Scaleup network (ULN) is also expected in future

The Future is Ultra

 Ultra Link and Ultra Ethernet for Ultra scale of Data

Conclusion

Al workloads are driving the need for scalable, low-latency connectivity

UALink and UEC emerge as purpose-built solutions for AI and HPC fabrics

Strong industry backing and ecosystem activity accelerating adoption

Roadmaps show clear alignment with future performance targets (800G, 1.6T+)

Open, interoperable standards ensure long-term scalability and vendor flexibility

References

- UALink Consortium
- <u>UEC consortium</u>
- Tom's Hardware: UALink vs NVLink context & incorporation
- Cisco Nexus Al Networking
- AMD Arch
- NvLink

