The Fabric of Super Intelligence AI & Networking Trends (2025-2028)

FMS Santa Clara – Aug 2025 Santhosh Thodupunoori Sr. Director of Engineering UpScale AI

Executive Summary – Al Infrastructure Trilemma

- **Frontier model scale:** already ≥ 1 T parameters; projections point to 5-10 T (MoE active 50-100 B) by 2028.
- OPEX shift: inference plus RL-based post-training now ~80 % of lifecycle cost for production models.
- Power & IO walls: racks scaling from 120 kW
 (2024) → 600 kW (2027) with 1 MW prototypes; requires full liquid cooling and 1.6 T / 200 G-lane SerDes, where reach & signal integrity are the next bottlenecks..

Five Pivotal Shifts (2025-2028)

- Network-bound era: MoE & multi-step agents push ≥40 % of run-time into All-to-All traffic.
- Inference OPEX rules: cumulative serving cost now overtakes training within two years.
- **Post-training surge:** preliminary reports hint Grok-4's RL phase $\approx 0.5 \times$ pre-train compute ($\sim 1e26$ FLOPs)
- Fabric realignment: closed NVLink / InfiniBand vs open UALink + Ultra-Ethernet (UEC 1.0).
- Optics roadmap: 800 G LPO today \rightarrow NPO pilots (2026) \rightarrow 1.6 T CPO volume (2027-28).

Strategic Recommendations

- Co-design model, RL pipeline & fabric; start board/rack layouts for ≤3" copper & optical break-out (800 G LPO → 1.6 T CPO).
- Efficiency first: deploy 4-bit quant, distill to 20-B MoE, add 2-stage speculative decoding for ≥2-4 × inference speed-up.
- Bet on openness & light: back CPO/NPO photonics, open-fabric silicon (UALink-200 & UEC), and asynchronous RL-ops orchestration stacks.

Frontier Models – Mid-2025 Leaders

- Grok-4 (≈480 B-param MoE; joint-SOTA MMLU-Pro, SOTA AIME).
- Claude-4 (params undisclosed, 200 K ctx); top-tier ARC-C (public score TBD).
- OpenAl o3 (128 K ctx, ~15 s TTFT; lowest \$/token at \$2 | \$8).
- Gemini 2.5 Pro flagship reasoning; Deep-Think now on Gemini Ultra.
- Llama 3.1 405B + Mixtral-8×22B open-weight wave drives OSS stack.

Architectural Revolutions

- Mixture-of-Experts (MoE): sparse routing unlocks T-param capacity without linear FLOPs, shifting the bottleneck to memory & All-to-All traffic.
- Structured State-Space Models (SSMs): Mamba hits 5 × Transformer throughput with O(N) scaling; Jamba hybrid delivers ~3 × and 256 K ctx in production.

Take-aways for architecture planners

- Expect SSM layers to enter mainstream only when toolchains catch up (Triton kernels, Flash-Mamba, better KV-cache eviction).
- Near-term (2025-26) the big wins still come from MoE sparsity + quantization + speculative decoding on top of standard Transformers.
- Keep an eye on hybrid MoE-SSM research; if the memory/latency claims hold at multi-trillion scale, GPT-6-class models could mix both by 2027.

Network Implications

- All-to-All traffic is the MoE choke-point: ≥40 % of runtime on Mixtral-class models; fabric BW/latency is the new throttle.
- Rail-optimized clusters (NVLink-Switch pods + leaf-only Ethernet) trim 40-75 % of switch/optic CAPEX without throughput loss.
- Towards optical racks: CPO/NPO deliver <1 μs intrarack hops; 1.6 T (8×200 G) links sample in '26, volume '27-28.

Scaling Trends – RL Era

- Universal toolboxes: agents now call external APIs by default, yet we've benchmarked only a tiny fraction of the possible tool space.
- RL compute surge: alignment, planning & tool-use loops are compute-hungry; unconfirmed estimates put Grok-4's RL budget at ≈ 50 % of pre-training FLOPs.
- Verifiable rewards: math / code tasks show the power of RLVR, but coverage is still narrow—ample headroom ahead.
- **Debate / consensus methods:** multi-agent critique is early-stage research; most of the solution space remains unexplored.

Inference & RL Efficiency – Key Levers

- Quantization: FP4 on Blackwell delivers ~2 × tokens/s vs FP8 at iso-accuracy.
- Distillation: 4–20 × model shrink in production (up to 100 × in research) enables on-device LLMs.
- Speculative decoding: 2-4 × latency cut; already powering GPT-4o's "Predicted Outputs".

Interconnect Debate + Leap to Light

- Scale-up battle: proprietary NVLink-Switch vs. open
 UALink-200 G (x4 = 800 G), both at 200 Gb/s-per-lane
 vs Scale-up Ethernet(SUE)
- Scale-out divergence: InfiniBand (Quantum-III/IV) vs. Ultra-Ethernet (UEC 1.0) an Ethernet-based, RoCE-derived AI fabric. (Debate settled: Ethernet wins!)
- Optical roadmap: 800 G LPO in volume now →
 NPO/OBO pilots 2025-26 → CPO roll-outs 2026-27 for 1.6 T ports.

Hyperscaler Networking Blueprints

- Google Jupiter: MEMS optical-circuit switches + SDN let the pod-to-pod topology re-wire on-the-fly.
- Meta Disaggregated Scheduled Fabric(DSF): Open Ethernet fabric (Jericho3-Al / Ramon3) under FBOSS & OCP-SAl keeps vendors interchangeable.
- xAI Colossus: 400 GbE BlueField-3 SuperNICs per GPU on an NVIDIA Spectrum-X (800 G port) Ethernet fabric.

Strategic Outlook (2025-2028) – Investment Theses

- **Network wall:** MoE & agent systems are now *network-bound* (All-to-All ≈ 30-50 % runtime); progress hinges on high-BW, sub-µs fabrics.
- Inference gold-rush: Capital is flooding into HW/SW stacks that cut serving cost (quant → FP4, distill, spec-decode).
- **Photonics boom:** CPO/NPO modules race toward a **\$1-2 B** TAM by 2027; entire photonics chain already >\$1 T.
- Open fabrics rise: UEC Ultra-Ethernet + UALink-200G offer multi-vendor scale-up/out paths and erode proprietary lockin.

Emerging Bottlenecks (Next 3-5 Years)

- Power & cooling: 30-60 MW AI clusters drive direct-to-chip and immersion liquid cooling adoption.
- Data quality ceiling: marginal gains now hinge on high-density domain data plus filtered synthetic generation.
- Operational scale: 100 k-accelerator clusters demand closed-loop AIOps for self-healing networks and firmware.

Action Plan for Technology Leaders

- Fabric strategy: weigh NVLink/UALink vs.
 InfiniBand/UEC on five-year TCO and vendor-flexibility.
- Infrastructure readiness: architect racks for optical break-out and direct-to-chip/immersion cooling as loads climb beyond 300 kW per rack.
- **Data-centric ops:** invest in quantisation (FP4), distillation, speculative decoding and high-quality synthetic data to drive down inference & RL cost.

Q&A

• Thank you!