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• Working memory is a space where the agent temporarily stores and processes information for immediate use in current tasks or reasoning

• Procedural Memory (Implicit knowledge stored in LLM weights), Semantic Memory (Agent’s knowledge about the world and itself)

• Episodic memory  stores experiences from earlier decisions, such as training input-output pairs, history event flows, game trajectories

Parse Retrieval

Procedural Memory

Prompt Learning Retrieval Learning

Semantic 
Memory

Retrieval Learning

Episodic
Memory

Decision 
Procedure

LLM with Reasoning (Working Memory)
Step1 Step2 Step3 Output

Actions Observation

“Procedural Memory over 1TB”
671B 
(1.4TB)

288GB

252423222120

LLM Size :410x/2-years
AI HW Memory: 2x/2-years

“Sematic Memory Sailing by DB Size”

900TB

30TB

0.3TB

1M 10M 100M 1B 10B 100B 300B

# of Embeddings (768-Dimension)

< Overall Architecture of LLM-based Agentic AI Model >
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• Based on procedural knowledge stored in its weights, the LLM can automatically determine and execute “how” to process any given input

• GPU cores leverage HBM's high bandwidth to rapidly receive and process the computational data needed for attention and FFN operations
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• Due to LLM’s memory-intensive demands, delivering services within SLA requires memory that offers both high bandwidth and large capacity

• HBM is undergoing continuous scaling in both capacity and throughput, ensuring that it can efficiently store increasingly large model weights

• Advancement in memory technology tackles today’s performance issues while supporting robust, real-time operations in LLM inference
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< LLaMA2-70B Query Latency >< Roofline of LLM inference on H100 GPU >

40GB of KV-Cache should 
be loaded under near 10ms 
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72GB/s
96GB/s

112GB/s

51GB/s
68GB/s

76.8GB/s

128GB/s

56GB/s

GDDR6 LP5

HBM2E
HBM3

HBM3E

461GB/s

819GB/s

1,178GB/s

2,048GB/s

HBM4

128GB/s

160GB/s
172GB/s

GDDR

LPDDRGDDR7
LP6

HBM4E
3,072GB/s

cHBM

HBM2
307GB/s

HBM

2018 2020 2022 2024 2026 2027 2029

Past

Present

Future



7Samsung Semiconductor

• Semantic memory is general knowledge about the world, and usually implemented as vector database in Agentic AI

• Each knowledge item (text, image, …) can be embedded to vectors, and the number of vectors can be billion scale

• Agent can generate appropriate answers based on the retrieved relevant information (=Retrieval Augmented Generation, RAG)

“What class do dogs 
belong to?”

“Dogs belong to 
mammals”

User

LLM Agent

Action: Retrieve 
information about dogs

Observation: Dogs 
belongs to mammals, …

Reflect: I can use that 
information as an 

answer

Message Output

Semantic Memory (VectorDBs)

VectorDB 1

VectorDB 2

Chatbot

Thinking …

< Agentic RAG Workflow >

Text #1

Text #2

Image #1 Image #2

Memory is general knowledge about the world, and usually implemented as vector database
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<CPU Server>
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< Index Memory Requirement >

• While GPU is busy with inferencing LLMs, CPU is suitable accelerator for vector search (Nearest Neighbor Search)

• Recent commercial embedding model requires more than 1k dimensional vectors, resulting in higher capacity (~TBs)

• Required memory bandwidth is also growing, as the required bandwidth is  proportional to the capacity
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Semantic Memory usually consumed by CPU, high capacity and middle BW memory required.
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Multiplexed Combined Rank DIMM beyond 12.8Gb/s, Larger capacity enabled with 2U F/F and 32Gb-based TSV

4x

2x

Capacity

Compared to 32Gb mono die

Performance

Compared to 6.4Gbps RDIMM
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• HNSW index supports fast and accurate search, but requires large memory capacity because of additional graph information

• Compared to RDIMM, MRDIMM has a 60% query-per-second (QPS) improvement due to the additional BW provided

• When CMM-D is added, there is an additional 16% QPS improvement along with additional 1TB DRAM capacity

*HNSW @Recall>0.95 Configuration. 1 socket GNR-SP, 8ch RDIMM-4800/MRDIMM-12800, 4ch CMM-Ds
<Samsung NAND AE, SMRC>
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< Index(HNSW) performance benefit of MRDIMM & CMM-D* >

Increase in both capacity & bandwidth

<Future System with MRDIMM & CMM-D>

CPU

256GB~

256GB~

256GB~

256GB~

MRDIMM

MRDIMM

CMM-D

CMM-D

CMM-D

CMM-D

The combination of MRDIMM & CMM-D can bring both BW and Capacity for RAG application
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• AI agent’s working memory is implemented as key/value cache, which consists of vectors generated by LLMs

• The sufficient context window is required for multi-step reasoning and decision-making of complex task

System Prompt
Prev. 

Conversation
Thinking 
tokens

Output 
tokens

Retrieved info 
(from semantic mem.)

User inputs 

< LLM context window (working memory) >

output

input

LLM

Thinking 
tokens

The more complex task,
the longer context needed

Working memory enables AI agents to perform complex tasks through continuous reasoning
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• KV cache : 2*[num_layers:fixed]*[head_dim:fixed]*[num_heads:fixed]*[batch_size:variable]*[context_length:variable]

• Exceeding amount of KV cache should be evicted to host memory (rather than discarding) for efficient inference
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KV Cache Size
evicted to Host

8x H100 80GB GPUs Capacity (640GB)
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Requests(R) x Sequence Length(S)

KV Cache Activation Weight

Weight is fixed regardless of the inference scaling

KV Cache is proportional 
to the inference scaling

Activation also increases, but can be 
reduced by optimization (lower 𝛼𝛼, 𝛽𝛽 = 0)

𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎 ∝ 𝛼𝛼𝑏𝑏𝑏𝑏𝑏𝑏 + 𝛽𝛽𝑏𝑏𝑛𝑛ℎ𝑠𝑠2

𝑚𝑚𝑘𝑘𝑘𝑘 ∝ 2𝑙𝑙𝑑𝑑ℎ𝑛𝑛ℎ𝑏𝑏𝑏𝑏

𝑚𝑚𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 ∝ 𝑛𝑛𝑛𝑛𝑛𝑛_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

b : batch size
s : seq length
l : num layers
𝑑𝑑: hidden dim
𝑛𝑛ℎ: num heads
𝑑𝑑ℎ: head dim

*Workload: LLaMA 3.1-405B, 128K context length per request.

KV cache is proportional to batch-size and context length and needed to be stored to 2nd tier memory
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• HBM provides high bandwidth, but has shortage in capacity, and cost-per-capacity is expensive

• CMM-D & MRDIMM provide high capacity, but has shortage in interconnect bandwidth to the computing location (GPU)

• A solution is needed to address both capacity and the bandwidth limitation

< PCIe 6.0 vs LLM Required BW*(TB/s)>
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< Required Capacity (TB) >< LLM Context Length >

8x H200 HBM Capacity (1.1TB)

HBM lacks capacity

CXL & MRDIMM lacks Bandwidth

To support working memory, a solution satisfying both high capacity & bandwidth is required
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• When offloading a 128K context of LLaMA3.1-405B model, 1TB of data needs to be moved, but CXL2.0 moves data at 64GB/s bandwidth(x8)

• PNM performs token block (page) based selection directly w/ CXL memory module, reducing amount of computation and data movement

• By taking only important KV-Cache, amount of operation/bandwidth are reduced, PNM can performance improvement at lower bandwidth

< Computation of Attention Layers in CPU+GPU (Upper) and CPU+GPU+PNM (Lower) >

KV-Cache Offload 

CPU

GPU
PCIe

CPU

GPU
PNM

Reduced 
Latency

1TB of All KV Cache Should 
be moved from CPU to GPU

Block Selection

*Workload: LLaMA 3.1-405B, 128K context length per request

QKV QKT

QKV

SV O
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SVQKT

Softmax

By selecting only important blocks within PNM 
and calculating KV-Cache, LLM inference 
throughput can be improved at low bandwidth

REQ1

REQ2

REQN

CPU’s Memory
KV-Cache

GPU’s Memory

Offload All KV-Cache
(1TB at 128K/16Batch)

REQ1

REQ2

Model Weight

KV-Cache

Samsung’s CXL-PNM

GPU’s Memory

Offload Only Results
(512KB at 128K/16Batch)

REQ1

REQ2

Model Weight

KV-Cache

REQ1

REQ2

REQN

BL
K 1
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K N
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KV-Cache

PNM
EST.
Sort
Att.

KV-Cache Management 
1) Estimation of Blocks 
- EN←Estimation(BLKN)

2) TOP-K Sorting
- RN←Sorting (EN)
- Select from R0 to RK-1

3) Attention using TOP-K
- Out=Attention (R0-RK)

0.25TB KV-Cache is required!
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• CXL-PNM performs token block based selection directly within CXL memory module, eliminating GPU’s KV-Cache offload cost 

• By storing  KV-Cache in CXL memory and offloading selection to PNM, GPU memory pressure and support larger batch sizes for FC layers

• With the integration of PIM technology, future KV Cache operations can be processed with greater speed and efficiency
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< End-to-End throughput/Efficiency comparison at LLaMa3.1-70B with Context length at 128K tokens > 
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• Agentic AI represents a significant shift in AI, necessitating advanced, layered memory systems.

• Key challenges include efficient data movement, especially migrating working memory KV caches during operations.

• Combining CXL memory with PNM & PIM tech and optimizing KV cache management minimizes data movement 

effectively.

• Samsung collaborates with OCP's Data-Centric Computing FTI to develop these innovations.
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