DRAM and NAND Reliability in Al era:

Understanding DRAM and NAND Data Retention Failure Mechanisms to Prevent System Downtime

Ju Jin An
Supply Chain Engineering, Infrastructure, IBM

Agentic Al

- Generative AI focuses on creating new content (like text, images, or code) based on prompts
 - Like a calculator takes an input, gives an output, forgets
- Agentic AI is focused on decisions as opposed to creating the actual new content, and doesn't solely rely on human prompts nor require human oversight
 - Like a project manager takes a goal, remembers status, revises plans, logs what happened
 - Extra "working memory" is needed to coordinate its actions over time
 - More reliable memory and storage in AI computation is required

Fig. 4.1 NAND Flash string with horizontal gate and vertical channel: **a** planar, **b** planar rotated by 90°, **c** vertical channel with cylindrical shape and **d** its cross section

Source: [1]

3D NAND Scaling

Shrink Stack X-Y shrink Z stack Z shrink (b) (a)

- To increase bit density, scaling in x-y direction, increasing the number of stacks in z direction and logical scaling have been developed
- Bit error rate margin is decreased with scaling

3D NAND Scaling Trend

- To increase bit density, scaling in x-y direction, increasing the number of stacks in z direction and logical scaling have been developed
- Bit error rate margin is decreased with scaling

111 110 101 100 011 010 001 000

PV1 PV2 PV3

Retention errors **◄** · · · · ·

Charge loss mechanisms in 3D NAND

- Lateral charge loss charge trap layer shared with adjacent WLs, inducing lateral charge loss (unique mechanism of charge trap NAND)
- Vertical charge loss trapped electrons in charge trap and tunnel oxide migrate to poly-Si

WL – Word Line BL – Bit Line

SSL – String Select Line

GSL – Ground Select Line

CSL - Common Source Lne

Charge loss mechanisms in 3D NAND

Short term (fast) charge loss mechanisms in 3D NAND

- Early retention or initial threshold voltage shift (IVS) is one of the key reliability challenges in charge trapping memory (CTM) based 3D
 NAND flash
- Multiple inflection points including gain in threshold voltage are observed in threshold voltage loss
 - Inflection points suggest superposition of several mechanisms when stored electrons are emitted during short term retention of 3-D NAND Flash
 - A distribution of trap depths exist in CTL (i.e., both deep and shallow trap depths exist within the same charge loss mechanism)
 - In short-term retention, shallower traps within the same charge loss mechanism can dominate early charge loss

Short term (fast) charge loss mechanisms in 3D NAND

Vertical charge loss

- De-trapping of trapped electrons in BE-tunneling oxide into the channel by tunneling mechanism
- TAT (Trap assisted tunneling) electrons stored in the CTN are emitted into the channel through trap sites in the BE-tunneling oxide
- VR (Vertical redistribution) of electrons stored in the charge trap layer
 - Immediately after the program operation, electrons stored near the blocking oxide interface move toward the BE-tunneling oxide
 - Charge centroid of the trapped electrons in the CTN is located near the blocking oxide interface and moves toward the BE-tunneling oxide interface
 - Electrons are still in CTN, however centroid of electron moves closer to Si channel, creating positive shift in Vth

LM (Lateral Migration) of electrons stored in the charge traps

- The movement of trapped electrons along the wordline direction
- Significantly affected by E-field (i.e., cell program pattern)
- LM increases with temperature increase

Hole

Impact of cycling stress and temperature on short term retention

Short term Charge Loss Mechanism	With increasing temperature	After cycling stress
Vertical Charge Loss including De-trapping, TAT (Trap Assisted Tunneling), VR (Vertical Redistribution)	 ✓ As the temperature increases, the number of electrons emitted into the channel increases → trapped electrons are emitted via tunneling mechanism and thermal emission process 	✓ Cycling induces tunnel oxide degradation (introducing interface/oxide traps), enhancing vertical charge loss
LM (Lateral Migration)	✓ As the temperature increases, more electrons migrates laterally	 ✓ Cycling induces accumulated charges in the intercell regions (between WL-WL) within charge trapping layer, suppressing lateral migration ✓ More charge traps in BE-tunneling oxide during program, meaning less electrons in CTL, lateral E-field continues to decrease

Charge Loss mechanisms during long-term retention operation

Higher activation energy (Ea) at higher temperature

- Ea has a temperature dependance
- It suggests multiple charge loss mechanisms exist at different operating conditions (temperature, cycling, program voltage level of a target cell and neighboring cells)

Source: [3]

WL

Vertical charge loss Lateral charge loss

©2025 Conference Concepts, Inc. All Rights Reserved

CT – Charge Trap Nitride

BE – Band-gap Engineered Tunneling Oxide

6000

VCL – Vertical Charge Loss

WL – Word Line

Vertical Charge Loss mechanisms during long-term retention operation

- DT (Direct Tunneling) from CT weak temperature dependance (low Ea) [10]
- TAT (Trap Assisted Tunneling) (Ea ~ 0.3-0.6eV) [11]
- TE (Thermionic Emission) [11]
- Poole-Frenkel Emission followed by PCAT –influenced by electric field [9]

CT

Source: [10]

Vertical Charge Loss mechanisms during long-term retention operation

- Vertical charge loss mechanisms from BE or CT
 - De-trapping from BE (Ea ~ 1.0eV) [10], [11]
 - ThAT (Thermally Assisted Tunneling) from CT [10]
 - DT (Direct Tunneling) from CT weak temperature dependance (low Ea) [10]
 - TAT (Trap Assisted Tunneling) (Ea ~ 0.3-0.6eV) [11]
 - TE (Thermionic Emission) [11]
 - Poole-Frenkel Emission followed by PCAT –influenced by electric field [9]

BE – Band Gap Engineered BO – Blocking Oxide PCAT – Positive Charge Assisted Tunneling

Lateral Charge Loss mechanisms during long-term retention operation

Source: [6]

Lateral charge loss mechanisms in CT

- At higher temperature region, Vt shift is believed due to the trapped electron lateral spread via ThAT (Thermally Assisted Tunneling) and/or Poole-Frenkel emission from CT
- As program state increases (from P2 to P7), more electrons are injected, producing larger lateral electric fields
- With more P/E cycling, accumulated charges in the intercell regions (between WL-WL) within charge trapping layer, suppressing lateral migration

CT – Charge Trap

LT – Low Temp (25-85C)

HT – High Temp (85-125C)

DRAM Scaling

Bit growth enhanced through wafer bonding

Cost-effective manufacturing by simplified patterning

Bit Growth **2D DRAM 3D DRAM** 2D Scaling **Cost Efficiency**

Source: [13]

Prototypes of 3D DRAM

DRAM Retention Loss Mechanisms

Capacitor leakage

Direct tunneling due to MIM capacitor dielectric thickness scaling

Sub-threshold leakage

 Leakage of charge from the capacitor even when the word line is inactive

GIDL (Gate-Induced Drain Leakage)

 Occurs due to high electric fields near the drain when the gate is at a low voltage, accelerating charge loss

Junction leakage

 When the transistor is off, the drain (connected to the capacitor) is often at a higher voltage than the substrate, creating a reverse-biased p-n junction where minority carriers diffuse across the junction

FIGURE12. Structure of a saddle fin based DRAM with three leakage current paths using TCAD simulation.

Source: [15]

Summary

- 1. Agentic Al requires more memory and storage with robust reliability
- 2. 3D NAND scaling reduces reliability margins, making data retention a critical concern
- Understanding charge loss mechanisms in charge-trap NAND (CT-NAND) during retention is a foundational step toward improving NAND reliability
- 4. Short-term and long-term charge loss are governed by the energy distribution of charge traps:
 - 1. Shallow traps \rightarrow dominate early-stage (short-term) loss
 - 2. Deep traps \rightarrow dominate long-term degradation
- 5. Continued DRAM scaling also leads to reduced retention reliability and narrower noise margins
- 6. A systematic review of DRAM retention loss mechanisms is essential to support future technology scaling and error mitigation

Reference

- [1] L. Crippa and R. Micheloni, "3D Charge Trap NAND Flash Memories," in 3D Flash Memories, R. Micheloni, Ed., Dordrecht: Springer Netherlands, 2016, pp. 85–127. doi: 10.1007/978-94-017-7512-0_4.
- [2] T.-Y. J. Chang, F. Hamzaoglu, Y. Li, K. Sohn, Y. Wang, and J. Wuu, "A Trip Down Memory Lane: Reflections on the progress in memories," *IEEE Solid-State Circuits Mag.*, vol. 15, no. 3, pp. 53–61, 2023, doi: 10.1109/MSSC.2023.3287169.
- [3] X. Jia et al., "Impact of Cycling Induced Intercell Trapped Charge on Retention Charge Loss in 3-D NAND Flash Memory," IEEE J. Electron Devices Soc., vol. 8, pp. 62–66, 2020, doi: 10.1109/JEDS.2019.2963473.
- [4] K. H. Kim et al., "Material engineering to enhance reliability in 3D NAND flash memory," Device, vol. 3, no. 2, Feb. 2025, doi: 10.1016/j.device.2024.100682.
- [5] Y. H. Liu, T. C. Zhan, Y. S. Yang, C. C. Hsu, A. C. Liu, and W. Lin, "Impact of Trapped Charge Vertical Loss and Lateral Migration on Lifetime Estimation of 3-D NAND Flash Memories," in 2023 IEEE International Reliability Physics Symposium (IRPS), 2023, pp. 1–6. doi: 10.1109/IRPS48203.2023.10118289.
- [6] X. Fang et al., "High-Precision Short-Term Lifetime Prediction in TLC 3-D NAND Flash Memory as Hot-Data Storage," IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 42, no. 10, pp. 3224–3235, 2023, doi: 10.1109/TCAD.2023.3240932.
- [7] C. Woo, S. Kim, and H. Shin, "Cell Pattern Dependency of Charge Failure Mechanisms During Short-Term Retention in 3-D NAND Flash Memories," IEEE Electron Device Lett., vol. 41, no. 11, pp. 1645–1648, 2020, doi: 10.1109/LED.2020.3023188.
- [8] C. Woo et al., "Modeling of Charge Failure Mechanisms during the Short Term Retention Depending on Program/Erase Cycle Counts in 3-D NAND Flash Memories," in 2020 IEEE International Reliability Physics Symposium (IRPS), 2020, pp. 1–6. doi: 10.1109/IRPS45951.2020.9129306.
- [9] Y. H. Liu, T. C. Zhan, Y. S. Yang, C. C. Hsu, A. C. Liu, and W. Lin, "Impact of Trapped Charge Vertical Loss and Lateral Migration on Lifetime Estimation of 3-D NAND Flash Memories," in 2023 IEEE International Reliability Physics Symposium (IRPS), 2023, pp. 1–6. doi: 10.1109/IRPS48203.2023.10118289.
- [10] D. G. Refaldi, G. Malavena, L. Chiavarone, N. Gagliazzi, A. S. Spinelli, and C. M. Compagnoni, "Cryogenic Investigation of Vertical Charge Loss in 3D NAND Flash Memories," in 2025 IEEE International Reliability Physics Symposium (IRPS), 2025, pp. 1–7. doi: 10.1109/IRPS48204.2025.10983672.
- [11] L. Chiavarone, G. Nicosia, N. Righetti, and Y. Dong, "Experimental Segmentation of Vertical Charge Loss Mechanisms in Charge Trap-Based 3D NAND Arrays," in 2024 IEEE International Reliability Physics Symposium (IRPS), 2024, pp. 1–5. doi: 10.1109/IRPS48228.2024.10529408.
- [12] H.-N. Yoo et al., "Effect of Lateral Charge Diffusion on Retention Characteristics of 3D NAND Flash Cells," IEEE Electron Device Lett., vol. 42, no. 8, pp. 1148–1151, 2021, doi: 10.1109/LED.2021.3088851.
- [13] J. Park et al., "4F2 DRAM Integration with Vertical Gate (VG) Cell Transistor and Peri-Under-Cell (PUC) Architecture," in 2025 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), 2025.
- [14] J. S. Hur et al., "Oxide and 2D TMD semiconductors for 3D DRAM cell transistors," Nanoscale Horiz, vol. 9, no. 6, pp. 934–945, 2024, doi: 10.1039/D4NH00057A.
- [15] G. Lee, M. Suh, M. Ryu, Y. Lee, J.-W. Han, and J. Kim, "Investigation Into the Degradation of DDR4 DRAM Owing to Total Ionizing Dose Effects," IEEE Access, vol. 11, pp. 97456–97465, 2023, doi: 10.1109/ACCESS.2023.3312926.

