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Agentic AI

• Generative AI focuses on creating new content (like text, images, or code) 

based on prompts

• Like a calculator - takes an input, gives an output, forgets

• Agentic AI is focused on decisions as opposed to creating the actual new 

content, and doesn't solely rely on human prompts nor require human 

oversight

• Like a project manager - takes a goal, remembers status, revises plans, 

logs what happened

• Extra “working memory” is needed to coordinate its actions over time

• More reliable memory and storage in AI computation is required
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3D NAND Scaling

Source: [1]



3D NAND Scaling

• To increase bit density, scaling in x-y direction, increasing the number of stacks in z direction 
and logical scaling have been developed

• Bit error rate margin is decreased with scaling
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3D NAND Scaling Trend

• To increase bit density, scaling in x-y direction, increasing the number of stacks in z direction 
and logical scaling have been developed

• Bit error rate margin is decreased with scaling
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Source: [2]

BiCS – Bit Cost Scalable



Charge loss mechanisms in 3D NAND

• Lateral charge loss  - charge trap layer shared with adjacent WLs, inducing lateral charge loss (unique mechanism of charge trap NAND)

• Vertical charge loss – trapped electrons in charge trap and tunnel oxide migrate to poly-Si

Source: [3] Source: [4]

WL – Word Line
BL – Bit Line
SSL – String Select Line
GSL – Ground Select Line
CSL – Common Source Lne



WLn-1 WLn+1 WLn+1
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90-degree
 rotation

• Shared CT(Charge Trap) layer with the adjacent word-line

Charge loss mechanisms in 3D NAND

Vertical charge loss

Source: [3]

[6]

[12]

WL – Word Line



Short term (fast) charge loss mechanisms in 3D NAND

• Early retention or initial threshold voltage shift (IVS) is one of the key reliability challenges in charge trapping memory (CTM) based 3D 
NAND flash

• Multiple inflection points including gain in threshold voltage are observed in threshold voltage loss
• Inflection points suggest superposition of several mechanisms when stored electrons are emitted during short term retention of 

3-D NAND Flash
• A distribution of trap depths exist in CTL (i.e., both deep and shallow trap depths exist within the same charge loss mechanism)

• In short-term retention, shallower traps within the same charge loss mechanism can dominate early charge loss
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Source: [7] [3]



Short term (fast) charge loss mechanisms in 3D NAND
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• Vertical charge loss
• De-trapping of trapped electrons in BE-tunneling oxide into the channel by 

tunneling mechanism
• TAT (Trap assisted tunneling) - electrons stored in the CTN are emitted into the 

channel through trap sites in the BE-tunneling oxide
• VR (Vertical redistribution) of electrons stored in the charge trap layer

• Immediately after the program operation, electrons stored near the blocking oxide 
interface move toward the BE-tunneling oxide

• Charge centroid of the trapped electrons in the CTN is located near the blocking 
oxide interface and moves toward the BE-tunneling oxide interface

• Electrons are still in CTN, however centroid of electron moves closer to Si channel, 
creating positive shift in Vth

• LM (Lateral Migration) of electrons stored in the charge traps
• The movement of trapped electrons along the wordline direction
• Significantly affected by E-field (i.e., cell program pattern)
• LM increases with temperature increase

Source: [8]

BE – Band Gap Engineered
CTN – Charge Trap Nitride



Short term Charge Loss 
Mechanism With increasing temperature After cycling stress

Vertical Charge Loss including
De-trapping,

TAT (Trap Assisted Tunneling),
VR (Vertical Redistribution)

 As the temperature increases, the number of 
electrons emitted into the channel increases  
trapped electrons are emitted via tunneling 
mechanism and thermal emission process

 Cycling induces tunnel oxide degradation (introducing 
interface/oxide traps), enhancing vertical charge loss

LM (Lateral Migration)

 As the temperature increases, more electrons 
migrates laterally

 Cycling induces accumulated charges in the intercell 
regions (between WL-WL) within charge trapping 
layer, suppressing lateral migration

 More charge traps in BE-tunneling oxide during 
program, meaning less electrons in CTL, lateral E-
field continues to decrease
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Impact of cycling stress and temperature on short term retention

CTL – Charge Trap Layer
BE Tox - Band-gap Engineered Tunneling Oxide

Source: [8]
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Charge Loss mechanisms during long-term retention operation
• Higher activation energy (Ea) at higher temperature

• Ea has a temperature dependance
• It suggests multiple charge loss mechanisms exist at different 

operating conditions (temperature, cycling, program voltage level of 
a target cell and neighboring cells)

CT – Charge Trap Nitride
BE – Band-gap Engineered Tunneling Oxide
VCL – Vertical Charge Loss
WL – Word Line

Source: [3] Source: [9]
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Vertical Charge Loss mechanisms during long-term retention operation

BE – Band Gap Engineered
BO – Blocking Oxide
PCAT – Positive Charge Assisted Tunneling

(De-trapping)

Source: [10]

• Vertical charge loss mechanisms from BE or CT
• De-trapping from BE (Ea ~ 1.0eV)
• ThAT (Thermally Assisted Tunneling) from CT
• DT (Direct Tunneling) from CT – weak temperature dependance (low Ea)
• TAT (Trap Assisted Tunneling) (Ea ~ 0.3-0.6eV)
• TE (Thermionic Emission)
• Poole-Frenkel Emission followed by PCAT –influenced by electric field [9]

[10]
[10]

[11]
[11]

[10], [11]
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Higher trap density in the BE with higher P/E cycling 

[11]
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Vertical Charge Loss mechanisms during long-term retention operation

BE – Band Gap Engineered
BO – Blocking Oxide
PCAT – Positive Charge Assisted Tunneling

(De-trapping)

Source: [10]

• Vertical charge loss mechanisms from BE or CT
• De-trapping from BE (Ea ~ 1.0eV)
• ThAT (Thermally Assisted Tunneling) from CT
• DT (Direct Tunneling) from CT – weak temperature dependance (low Ea)
• TAT (Trap Assisted Tunneling) (Ea ~ 0.3-0.6eV)
• TE (Thermionic Emission)
• Poole-Frenkel Emission followed by PCAT –influenced by electric field [9]

[10]
[10]

[11]
[11]

[10], [11]



©2025 Conference Concepts, Inc. All Rights Reserved

Lateral Charge Loss mechanisms during long-term retention operation

WLn-1 WLn+1 WLn+1

• Lateral charge loss mechanisms in CT
• At higher temperature region, Vt shift is believed due to the trapped 

electron lateral spread via ThAT (Thermally Assisted Tunneling) and/or 
Poole-Frenkel emission from CT

• As program state increases (from P2 to P7), more electrons are injected, 
producing larger lateral electric fields

• With more P/E cycling, accumulated charges in the intercell regions 
(between WL-WL) within charge trapping layer, suppressing lateral 
migration

Source: [6]

[9]

Source: [9]

Direct Tunneling from 
CT (insensitive to 
lateral E field)

ThAT from CT 
(sensitive to lateral E 
field)

ThAT – Thermally Assisted Tunneling
CT – Charge Trap
LT – Low Temp (25-85C)
HT – High Temp (85-125C)
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DRAM Scaling

Source: [13]
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Prototypes of 3D DRAM

Source: [14]
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DRAM Retention Loss Mechanisms
• Capacitor leakage

• Direct tunneling due to MIM capacitor dielectric 
thickness scaling

• Sub-threshold leakage
• Leakage of charge from the capacitor even when the 

word line is inactive

• GIDL (Gate-Induced Drain Leakage)
• Occurs due to high electric fields near the drain when 

the gate is at a low voltage, accelerating charge loss

• Junction leakage
• When the transistor is off, the drain (connected to the 

capacitor) is often at a higher voltage than the 
substrate, creating a reverse-biased p-n junction where 
minority carriers diffuse across the junction

Source: [15]
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Summary
1. Agentic AI requires more memory and storage with robust reliability

2. 3D NAND scaling reduces reliability margins, making data retention a critical concern

3. Understanding charge loss mechanisms in charge-trap NAND (CT-NAND) during retention is a 

foundational step toward improving NAND reliability

4. Short-term and long-term charge loss are governed by the energy distribution of charge traps:

1. Shallow traps → dominate early-stage (short-term) loss

2. Deep traps → dominate long-term degradation

5. Continued DRAM scaling also leads to reduced retention reliability and narrower noise margins

6. A systematic review of DRAM retention loss mechanisms is essential to support future technology scaling 

and error mitigation
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