High Bandwidth Memory

Market and Technology Trends

Presenter:

Simone Bertolazzi, Ph.D.

Principal Analyst at Yole Group

simone.bertolazzi@yolegroup.com

HIGH BANDWIDTH MEMORY – MARKET & TECHNOLOGY TRENDS

Presentation Outline

Memory Market Dynamics

Overview by Technologies

High-Bandwidth Memory

Ecosystem and Technology Trends

MEMORY MARKET OVERVIEW

2024 Memory Market – Breakdown by Technology

Memory Market Evolution (2020 – 2025)

Source: "Status of the Memory Industry 2025" by Yole Group

DRAM MARKET OVERVIEW

2024 DRAM Market Shares

Note: revenues include chips and wafers, as well as memory modules and HBM stacks sold by <u>IDM memory companies</u>.

DRAM Revenue

DRAM Average Selling Price

\$/Gb

HBM MARKET OUTLOOK - OVERVIEW

Revenue (\$B)

HBM revenue (\$B)

CAGR₂₄₋₃₀ ~33%

---- HBM share of DRAM market (%)

Bit shipments (B GB)

HBM bit shipments (B GB)

CAGR₂₄₋₃₀ ~31%

---- HBM share of DRAM market (%)

Wafer Production (K WPM)

HBM wafer production (KWPM)

CAGR₂₄₋₃₀ ~18%

---- HBM share of DRAM market (%)

DRAM BIT DEMAND - FOCUS ON DATA CENTERS

Al applications are fueling DRAM growth in data centers

• The rise of generative AI – initiated by the release of ChatGPT in November 2022 – and the continuous expansion of data-intensive AI/HPC applications in data centers led to a significant surge in DRAM shipments in 2023. These trends will induce continuous market growth throughout the next five years.

APPROACHES TO OVERCOME THE MEMORY WALL - OVERVIEW

HBM, Chiplets, Near- or In-Memory Computing

Low latency is the most important feature. Mainly for applications requiring high bandwidth.

Data is more important for the application.

Mainly for dataintensive

applications.

Memory moves towards computing

Computing moves towards memory or storage

DRAM-based processing in memory

SAMSUNG

Samsung AXDIMM solution

Computational storage

storage drive solution

Computing

HIGH-BANDWIDTH MEMORY (HBM)

2024 HBM Revenue Market Share

HBM Stack TSV & Microbumps

Source: "SK hynix HBM3" report by Yole Group, 2025

HIGH-BANDWIDTH MEMORY (HBM)

Product Development Overview

HBM generation	НВМ	НВМ2	НВМ2Е	НВМ3	НВМ3Е	НВМ4
Players with products in the market	SK hynix	SAMSUNG Flarebolt Aquabolt Aquabolt-XL (PIM)	SAMSUNG Flashbolt SK hynix Micron.	SAMSUNG Icebolt	SAMSUNG Shinebolt Sk hynix	SAMSUNG SK hynix _micron.
Year of first product release	2014	2018	2020	2022 - 2023	2024	2026(E)
Typical number of dies per stack (Main packaging approach)	4Hi (TSV & microbumps)	4-8Hi (TSV & microbumps)	4-8Hi (TSV & microbumps)	8-12Hi (TSV & microbumps)	8-12Hi (16Hi) ^{NEW} (TSV & microbumps)	12-16Hi (TSV & microbumps)
Max capacity per stack	1GB	4-8GB	8-16GB	16-24GB	24-36GB (48GB) ^{NEW}	36-48GB
Die density (Typical process)	2Gb (2x)	8-16Gb (2y, 2z)	16Gb (1y, 1z)	16Gb (1z)	24Gb (1a, 1b/1β)	24Gb (32Gb)* (1b/1β, 1c/1γ)
Max data rate	1Gbps	2-2.4Gbps	3.2-3.6Gbps	5.6-6.4Gbps	8.0-9.8Gbps	≥ 6.4Gbps
Effective bus width	1,024	1,024	1,024	1,024	1,024	2,048
Max bandwidth per stack	128GB/s	205-307GB/s	460GB/s	819GB/s	1.2TB/s	≥ 2TB/s

BONDING TECHNOLOGIES FOR HIGH-BANDWIDTH MEMORY

- Reportedly, wafer-to-wafer (W2W) hybrid bonding will be first used to stack the first DRAM layer and the base/logic layer. The first technologies using this approach will likely be HBM4E/HBM5 (≥16Hi), particularly in customized HBM solutions.
- Collective Die-to-Wafer (D2W) and Die-to-Die (D2D) bonding schemes will be used in subsequent generations. We currently model die-bonding approaches to start from the HBM5 generation from 20Hi.

Mass Production Time For Market Leaders

Technologies based on MR-MUF* or NCF-TCB** with TSV and microbumps

Image credit: Applied Materials

Technologies that are likely to make use of hybrid (or fusion) bonding

*MR-MUF: Mass Reflow Molded Underfill

**NCF-TCB: Non-Conductive Film Thermo-Compression Bonding

Source: "Next-Generation DRAM 2025" by Yole Group

HIGH-BANDWIDTH MEMORY - DETAILED SUPPLY CHAIN

Plating Solution

Gases

CMP Slurries and Pads

Tape (Dicing/Grinding)

Source: "Next-Generation DRAM 2025" by Yole Group

TSV Process

TCB Process

(A) Hanwha

APPLIED MATERIALS.

APPLIED MATERIALS

HWATSING

Molding Process

ASMPT TOWA

Kulicke & Soffa

Lam[®]

ASMPT

set

DISCO

YAMADA

Hybrid Bonding (currently in R&D)

CMP, Grinding and Dicing

KLA

SH/3/UR/

SUSS

ACCRETECH

ADT

SEMES

TORAY'

/ SH/3/UR/

MEMORY BUSINESS IN MAINLAND CHINA

Companies active in the HBM ecosystem

SUMMARY & OUTLOOK

- HBM is no longer just a niche product, it's at the heart of the AI revolution, and the battle for HBM leadership is becoming a strategic race on the global stage.
- HBM is reshaping the DRAM industry, capturing a growing share of the market with a projected 33% CAGR and expected to reach ~50% of DRAM revenue by 2030.
- Revenue is set to double from approximately \$17 billion in 2024 to around \$34 billion in 2025.
- Advanced bonding solutions enable higher memory stacks and seamless logic integration crucial for AI system innovation.
- China is stepping up its efforts to localize HBM production: strong domestic Al-accelerator demand, substantial government support, and an established industry network are likely to secure Chinese players a meaningful HBM foothold within the next few years.

YOLE GROUP MEMORY PRODUCTS

Market Monitors and Reports

NAND Market Monitor

DRAM Market Monitor

YMTC 232-layer 3D NAND

Technology, Process and Cost Reports

Next-generation DRAM 2025 - Focus on HBM and 3D DRAM

Status of the Memory Industry 2025

CXMT G4 DDR5 DRAM

Generative AI 2025

Emerging Non-Volatile Memory 2024 2025 edition coming soon

SK hynix HBM3

Neuromorphic Computing, Memory and Sensing 2024

Status of the Processor Industry 2025

MCU - Nuvoton M2L31 512 KB RRAM

ACKNOWLEDGEMENTS

Memory and Computing Analysts at Yole Group

Principal Analyst, Memory (DRAM)

John Lorenz

> Experience

15+ years in memory and computing

(Micron Technology)

> At Yole

DRAM, processors

Education

Bachelor of Science in Mechanical Engineering from the University of Illinois Urbana-Champaign (USA), with a focus on MEMS devices,

Thibaut Grossi

Senior Analyst,

Memory (NAND)

Experience

15+ in Electronic Procurement (Semiconductor, PC BA and software)

> At Yole

NAND

Education

M.Sc. in Electronic and Computing science

Simone

Bertolazzi. PhD

Principal Analyst,

Memory

Experience

15 years in emerging semiconductor devices

> At Yole

Memory

Education

Ph.D. in Nanoelectronics (EPFL, Switzerland)

M.Sc. in Micro & Nanotechnology

M.Sc. in Engineering Physics

Josephine Lau

Senior Analyst,

Memory

Experience

10+ years in memory and storage industry

> At Yole

Memory

Education

Bachelor of business marketing

Passed chartered financial analyst level

Daniel Niu

Market

Researcher

Experience

3+ years in memory and processor industry

→ At Yole

Memory, computing and Al

China Market

Education

Master's degree in chemical engineering

Tom

Hackenberg

Principal Analyst,

MCU

Experience

20+ years in computing and microcontrollers

→ At Yole

Computing

> Education

BSEE/BSECE from the University of Texas at Austin specializing in Processors and FPGAs.

Belinda Dube

Senior Analyst,

Integrated

Circuits

> Experience

5+ years in computing, memory and advanced packaging

> At Yole SystemPlus

Memory, Computing & Advanced Packaging

> Education

M.Sc. in Nanoelectronics and Nanotechnology

M.Sc. Electronics & Instrumentation

Ying-Wu Liu

Analyst, Integrated

Circuit

> Experience

8 years in the semiconductor industry

At Yole SystemPlus

Computing

> Education

M.Sc. in theoretical physics

M.Sc. in Integration, Security and Trust in Embedded systems

Thank you for your attention!

Simone Bertolazzi, Ph.D.

Principal Analyst at Yole Intelligence

simone.bertolazzi@yolegroup.com

