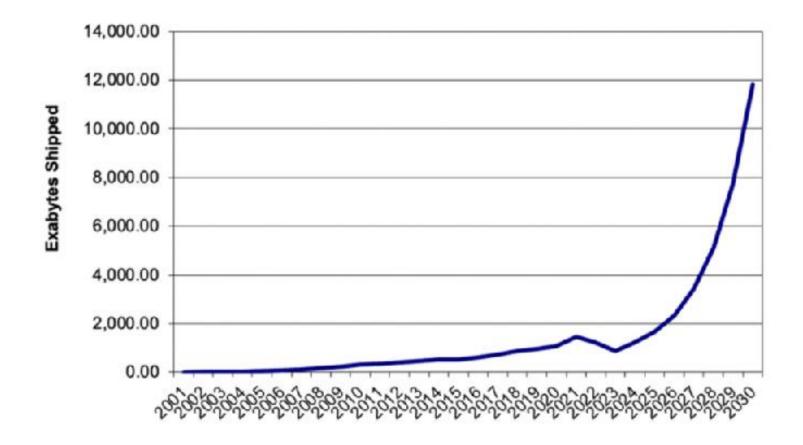
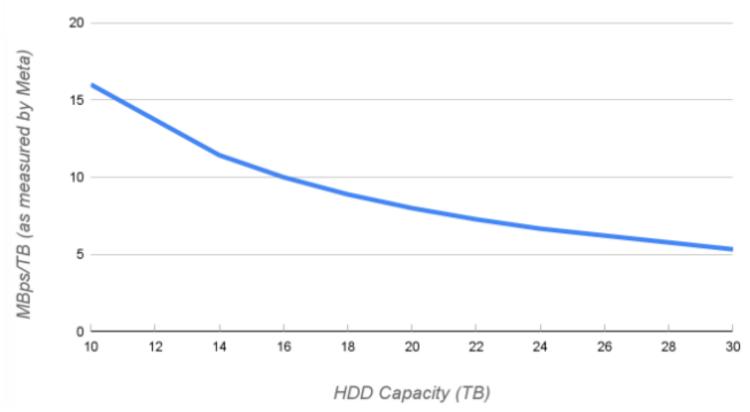
E2: A new high-capacity form factor

Anthony Constantine


Distinguished Member of Technical Staff, Micron

Question

How much HDD Capacity is predicted to ship by 2030?



Source: Coughlin Associates Digital Storage Technology Newsletter https://tomcoughlin.com/product/digital-storage-technology-newsletter/

Problem

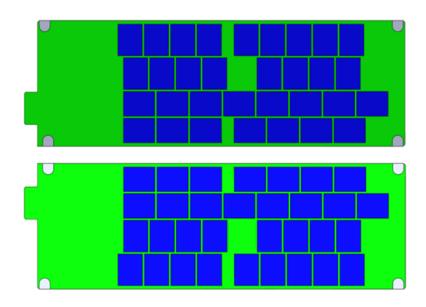
Performance concerns driving need for MB/s per TB performance

Sustained Throughput/TB on Various HDD Capacity Points

Source: Meta blog: A case for QLC SSDs in the data center https://engineering.fb.com/2025/03/04/data-center-engineering/a-case-for-qlc-ssds-in-the-data-center/

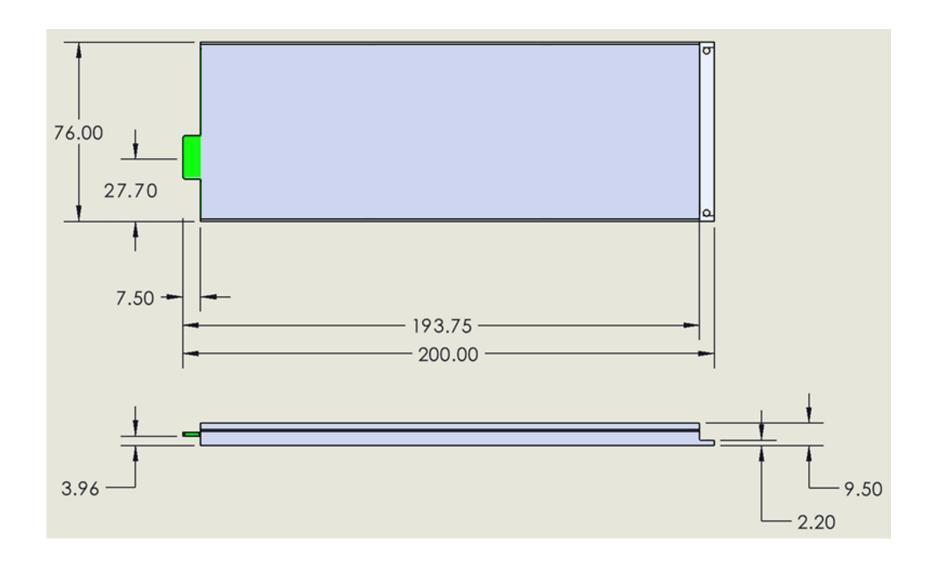
Solution: capacity tier SSDs

- High capacity QLC SSDs help solve this problem
 - Higher capacity, better performance/TB, and better power/TB than HDDs
- The challenge: SSD vs. HDD cost to meet capacity needs
- Reducing cost: higher capacity/SSD
 - Reduces number of non-NAND components per rack
 - Reduces number of SSDs per rack
 - Reduces number of control nodes per rack


Choices and tradeoffs

Option	Pros/Cons
Current form factor Double the NAND die per package (using E3.S, E3.L, E1.L)	+ Use existing form factors- Higher cost (compounding yields)- Thermals
New form factor Move to 64 NAND packages (E2)	+ Cheap + Thermally efficient - New form factor
Thicker form factor Move to 64 NAND packages (using E3.L 2T)	 + Use existing form factors but new thickness - Higher cost (multiple PCBs plus internal cabling) - Consumes more front panel area - Thermals

A new form factor is the best path forward to address the capacity problem


Goals of E2

- 64 NAND packages
- NVMe, PCIe, EDSFF (don't invent something drastically new)
- Leverage what has already been done when possible

Form Factor	E2	E3.S/L 1T	E1.L 9.5	E1.S 9.5
Protocol	NVMe	NVMe	NVMe	NVMe
Transport	PCle	PCle	PCle	PCle
Connector	SFF-TA-1002	SFF-TA-1002	SFF-TA-1002	SFF-TA-1002
Pinout/electricals	SFF-TA-1009	SFF-TA-1009	SFF-TA-1009	SFF-TA-1009
Number of packages	64+	16-48	32-48	8-16
Enclosure Length	200mm	112.75/142.2mm	318.75mm	118.75mm
Enclosure width	76mm	76mm	38.4mm	33.75mm
Enclosure thickness	9.5mm	7.5mm	9.5mm	9.5mm
Connector alignment	E3 Aligned	E3 Aligned	E1 aligned	E1 aligned
Latch/Carrier	E1 Style	E3 Style	E1 Style	E1 Style
EMI/ESD	E1 style	E3 Style	E1 style	E1 style

Dimensions

Spec development

Specification went from concept to publication in 2 months!

Date	ID	Title	Status
2025-06-16	SFF-TA-1042	Enterprise and Datacenter 2U Form Factor (E2)	Published 1.0, 2025-06-16

Source: https://www.snia.org/sff/specifications

Source: https://members.snia.org/document/dl/55771

Prototype development

Micron E2 SSD prototypes

Prototype chassis

For more information

- SFF-TA-1042 enterprise and data center 2U Form Factor (E2)
 - https://members.snia.org/document/dl/56434
 - -Join SNIA to participate in this and other specifications
- Visit the Micron booth (#107) to see the prototype E2 and chassis
- Look for future product announcements from Micron on E2

© 2025 Micron Technology, Inc. All rights reserved. Information, products, and/or specifications are subject to change without notice. All information is provided on an "AS IS" basis without warranties of any kind. Statements regarding products, including statements regarding product features, availability, functionality, or compatibility, are provided for informational purposes only and do not modify the warranty, if any, applicable to any product. Drawings may not be to scale. Micron, the Micron logo, the M logo, Intelligence Accelerated™, and other Micron trademarks are the property of Micron Technology, Inc. All other trademarks are the property of their respective owners.