

Dictionary-Based, Lossless
Data Compression in Storage

Widely Used in Storage Systems
* Enhances effective storage capacity
e DEFLATE, ZLIB, GZIP, XP10 etc.
* Fast compression using dictionary-based techniques
e Both hardware and software implementations

Two Main Stages

* LZ77 matches substrings in the look-ahead buffer with the history buffer and
replaces them with (distance, length) codes and/or literals

* Entropy Coding

N 7\

MS MAXLINEAR

—— A\ 4

Lazy Matching in LZ77 with
Delayed Match Window (DMW)

Postpone Immediate Encoding DMW=0 Match
. o ith length 5
= Avoid committing to the match Wit enet
~

found in first scan of history

The museum displayed letters|and|maps, from one

thousand seven Jhundred and seventy-five.

Aggressive Look-Ahead \ }

= Skip ahead in the look-ahead buffer Y History Buffer

to explore potentially better matches DMW=1 Match ~ DMW=0
with length9 Coding Position

Iterative Refinement DMW-=1 gives a better match of length 9 compared to

DMW=0 iteration

= Repeat the process for a fixed
number of steps — the Delayed Match
Window — to optimize match quality

N 7~ \
—MS MAXLINEAR
—— A\ 4

Lazy Matching with DMW

XP10 Compression with 64KB Block Sizes
% Increase in Compression Ratio for XP10 with 64KB

Block Sizes 120000
19 DMW=1 =DMW=2 =DMW=3

100000

10 3
S 80000

8 o

(¥a)
2 50000

S

40000

20000 I I I
0 I N I il ..
%] x
. g 3

11s0om [N
wx

o N N
suaolp [N
gpso [N

owdo,

[] [] I
3 3 3 9 % % =% 3 3 3 o 9 3 o s
. T " 3 2 : £ ° 7 3 8 3 i .
o @ o e) o) % o ®
v/ Better Compression Ratio X High Computational Cost
= Optimization of match quality = Scans across all DMW iterations
with aggressive look ahead = Redundant comparisons and high
latency
Tested using the Silesia corpus on MaxLinear's XP10 software implementation, running on a dual-socket system with
e 24-core Intel® Xeon® E5-2630 CPUs at 2.30 GHz. 7\
—MS MAXLINEAR

— N\

Efficient Algorithm for
Optimal Match Detection

" Goal — Optimal match detection with minimal overhead

" Reducing the number of comparisons without sacrificing accuracy

7\
MAXLINEAR
N

Key ldeas

" Bidirectional Seed Match Expansion from final DMW iteration
» Mathematical Guarantees for Pruning

" Efficient Hash-Based Matching

7\
MAXLINEAR
N

Bidirectional Seed Match Expansion
‘ ' Seed Match '

‘ 7 E—
Bachward | Seed Match | S0
i=k ikt W-T
- History Buffer -l Look- Ahead Buffer -~
Start at Final DMW lteration Backward Match Extension
" |dentify matches = Detect earlier DMW matches without

redundant scans by extending backward

Forward Match Extension . o
= Extend matches from the Best Match Selection Criteria

seed position = Choose the best match and its
corresponding DMW iteration only if the
selected iteration shows sufficient

dominance over earlier ones
N 7\
—MS MAXLINEAR
N—— A\ 4

Pruning with Matched Bounds

Start with the winner of bidirectional seed match expansion

e DMW | producing L match length, W is DMW length
Upper DMW Pruning

* All higher iterations i > | can be safely skipped — they cannot produce better match
Lower DMW Refinement

* Explore only bounded set of lower DMW iterations

* Bound is derived from initial winning iteration and best match length
Imin+W—1—L+lJ
2

1<

" For large enough match, no additional iteration needs to be explored
" The pruning strategy is mathematically guaranteed to preserve optimal

match
N 7~ \
— M_S MAXLINEAR

—— A\ 4

Algorithm

1. Seed Match Detection
» Use rolling hashes to find initial matches of length | i, at the final DMW iteration

2. Bidirectional Match Expansion

» Extend matches forward and backward to capture longer substrings across DMWs
» Choose the best match based on length and proximity to the coding position

3. DMW Space Pruning
» Apply theoretical bounds to skip unpromising DMW iterations

4. Emit Output

» Output either a (length, distance) pair and/or a literal if no match is found

5. Hash Table Update

» Continuously update rolling hashes for efficient future match detection

N 7~ \
—MS MAXLINEAR
— N

Latency Reduction in XP10 Compression

120000
> 100000
< —
2 2 80000
T c
— 0
m O 60000
9
= = 40000
=
& 20000 II I
0 Il I 1 .- I II ll i =
dickens mozilla nci ooffice osdb reymont samba webster xml
M Lazy Match 17494 124726 39639 30116 21974 7129 36985 17269 10847 13345 9375
B Proposed Algorithm 11503 73929 20540 22696 15844 6092 18141 12413 8418 9170 6481
M Latency Reduction (%) 34 41 48 25 28 15 51 28 22 31 31

Tested using the Silesia corpus on MaxLinear's XP10 software implementation, running on a dual-socket system with

24-core Intel® Xeon® E5-2630 CPUs at 2.30 GHz.
N 7\
—MS MAXLINEAR
N—— _

Summary

" Introduced Bidirectional Seed Match Expansion and DMW Space
Pruning to enhance LZ77-style compression

" Maintains optimality while significantly improving efficiency
= With provable match coverage and reduced computational overhead

= Significant reduction in compression latency

N 7~ \
—MS MAXLINEAR
— N

I
C\
™

e
— i

(D
(N
| e

"‘
N3

	Slide 1: Optimizing Data Compression: Enhancing Efficiency of Delayed Match Windowing
	Slide 2: Dictionary-Based, Lossless Data Compression in Storage
	Slide 3: Lazy Matching in LZ77 with Delayed Match Window (DMW)
	Slide 4: Lazy Matching with DMW
	Slide 5: Efficient Algorithm for Optimal Match Detection
	Slide 6: Key Ideas
	Slide 7: Bidirectional Seed Match Expansion
	Slide 8: Pruning with Matched Bounds
	Slide 9: Algorithm
	Slide 10: Latency Reduction in XP10 Compression
	Slide 11: Summary
	Slide 12: Thank you!

