
Pinaki Chanda, MaxLinear

Optimizing Data Compression:
Enhancing Efficiency of
Delayed Match Windowing

Dictionary-Based, Lossless
Data Compression in Storage

Widely Used in Storage Systems
• Enhances effective storage capacity

• DEFLATE, ZLIB, GZIP, XP10 etc.

• Fast compression using dictionary-based techniques

• Both hardware and software implementations

Two Main Stages
• LZ77 matches substrings in the look-ahead buffer with the history buffer and

replaces them with ⟨distance, length⟩ codes and/or literals

• Entropy Coding

©2025 Conference Concepts, Inc. All Rights Reserved

Lazy Matching in LZ77 with
Delayed Match Window (DMW)

Postpone Immediate Encoding

▪ Avoid committing to the match
found in first scan of history

Aggressive Look-Ahead

▪ Skip ahead in the look-ahead buffer
to explore potentially better matches

Iterative Refinement

▪ Repeat the process for a fixed
number of steps — the Delayed Match
Window — to optimize match quality

©2025 Conference Concepts, Inc. All Rights Reserved

DMW=0 Match
with length 5

The museum displayed letters and maps, from one

thousand seven hundred and seventy-five.

DMW=1 Match
with length 9

DMW=0
Coding Position

History Buffer

DMW=1 gives a better match of length 9 compared to
DMW=0 iteration

Lazy Matching with DMW

©2025 Conference Concepts, Inc. All Rights Reserved

High Computational Cost
▪ Scans across all DMW iterations
▪ Redundant comparisons and high

latency

Better Compression Ratio

▪ Optimization of match quality
with aggressive look ahead

0

2

4

6

8

10

12

dickens

m
ozilla

m
r

nci

ooffice

osdb

reym
ont

sam
ba

sao

w
ebster

xm
l

%

% Increase in Compression Ratio for XP10 with 64KB
Block Sizes

Tested using the Silesia corpus on MaxLinear's XP10 software implementation, running on a dual-socket system with
24-core Intel® Xeon® E5-2630 CPUs at 2.30 GHz.

Efficient Algorithm for
Optimal Match Detection

▪ Goal – Optimal match detection with minimal overhead

▪ Reducing the number of comparisons without sacrificing accuracy

©2025 Conference Concepts, Inc. All Rights Reserved

Key Ideas

▪ Bidirectional Seed Match Expansion from final DMW iteration

▪ Mathematical Guarantees for Pruning

▪ Efficient Hash-Based Matching

©2025 Conference Concepts, Inc. All Rights Reserved

Bidirectional Seed Match Expansion

Start at Final DMW Iteration

▪ Identify matches

Forward Match Extension

▪ Extend matches from the
seed position

Backward Match Extension

▪ Detect earlier DMW matches without
redundant scans by extending backward

Best Match Selection Criteria

▪ Choose the best match and its
corresponding DMW iteration only if the
selected iteration shows sufficient
dominance over earlier ones

©2025 Conference Concepts, Inc. All Rights Reserved

Pruning with Matched Bounds

Start with the winner of bidirectional seed match expansion
• DMW l producing L match length, W is DMW length

Upper DMW Pruning
• All higher iterations i > l can be safely skipped – they cannot produce better match

Lower DMW Refinement
• Explore only bounded set of lower DMW iterations
• Bound is derived from initial winning iteration and best match length

▪ For large enough match, no additional iteration needs to be explored
▪ The pruning strategy is mathematically guaranteed to preserve optimal

match

©2025 Conference Concepts, Inc. All Rights Reserved

min 1

2

l W L l
i

+ − − + 
  
 

Algorithm

1. Seed Match Detection
› Use rolling hashes to find initial matches of length lₘᵢₙ at the final DMW iteration

2. Bidirectional Match Expansion
› Extend matches forward and backward to capture longer substrings across DMWs

› Choose the best match based on length and proximity to the coding position

3. DMW Space Pruning
› Apply theoretical bounds to skip unpromising DMW iterations

4. Emit Output
› Output either a (length, distance) pair and/or a literal if no match is found

5. Hash Table Update
› Continuously update rolling hashes for efficient future match detection

©2025 Conference Concepts, Inc. All Rights Reserved

Latency Reduction in XP10 Compression

©2025 Conference Concepts, Inc. All Rights Reserved

dickens mozilla mr nci ooffice osdb reymont samba sao webster xml

Lazy Match 17494 124726 39639 30116 21974 7129 36985 17269 10847 13345 9375

Proposed Algorithm 11503 73929 20540 22696 15844 6092 18141 12413 8418 9170 6481

Latency Reduction (%) 34 41 48 25 28 15 51 28 22 31 31

0

20000

40000

60000

80000

100000

120000
D

M
W

=3
 L

at
en

cy

(µ
Se

co
n

d
s)

Tested using the Silesia corpus on MaxLinear's XP10 software implementation, running on a dual-socket system with
24-core Intel® Xeon® E5-2630 CPUs at 2.30 GHz.

Summary

▪ Introduced Bidirectional Seed Match Expansion and DMW Space
Pruning to enhance LZ77-style compression

▪ Maintains optimality while significantly improving efficiency

▪ With provable match coverage and reduced computational overhead

▪ Significant reduction in compression latency

©2025 Conference Concepts, Inc. All Rights Reserved

Thank you!

	Slide 1: Optimizing Data Compression: Enhancing Efficiency of Delayed Match Windowing
	Slide 2: Dictionary-Based, Lossless Data Compression in Storage
	Slide 3: Lazy Matching in LZ77 with Delayed Match Window (DMW)
	Slide 4: Lazy Matching with DMW
	Slide 5: Efficient Algorithm for Optimal Match Detection
	Slide 6: Key Ideas
	Slide 7: Bidirectional Seed Match Expansion
	Slide 8: Pruning with Matched Bounds
	Slide 9: Algorithm
	Slide 10: Latency Reduction in XP10 Compression
	Slide 11: Summary
	Slide 12: Thank you!

