
Famfs: Open Source
Scale-Out Shared
Memory File System
Aug 2025
John Groves
Technical Director

2

Get Ready for Big Pools of Disaggregated
Memory

• Larger data sets fit in memory
–Sharding can be avoided
–Shared Memory is effectively
“Deduplicated”

–A Good Access Method is Needed
• The File System Interface is Quite
Natural for Shared Memory
–But Existing File Systems Don’t Work
Here

Disaggregated
Memory Pool

48TiB
Data Set

Server

16TiB
Memory

Expansion

Server

3

Famfs Organizes Shared Memory as a
Scale-Out File System

• Memory is accessible as files
– Write/read become memcpy
– Mmap maps the memory for byte-level access

• “All” apps can access data in files

• Famfs files are memory and not storage
– Move data into famfs for in-memory access
– Move data out of famfs to store persistently

• Posix permissions apply, along with strict partitioning of
data from separate files

Famfs Client
Nodes

Famfs Master Node

/mnt/famfs
/mnt/famfs/set0
/mnt/famfs/set1
/mnt/famfs/set2
/mnt/famfs/set3
…

mkfs.famfs /dev/dax0.0
famfs mount /dev/dax0.0 /mnt/famfs
famfs cp [-r] <src> <dest>
famfs creat –s <size> <dest>

Enabling shared memory for all apps that can use files !!

4

What if Data is [Much] Bigger than Memory

• Some data can be reduced effectively

• Some data can be sharded effectively

• Some data is accessed sequentially, and can
be staged via DMA / RDMA

• Random access in disaggregated memory is
2 orders of magnitude lower latency than NVME
(100x Improvement)

Data is Large

Can Use
Data

Reduction
YAY

YES

Can Shard
Effectively OK

YES

NO

Use Disaggregated
Memory

Access is
Sequential

Use DMA /
RDMA

YES

NO

NO

5

Disaggregated Memory can be Much Larger
than System RAM

Disaggregated
Memory Pool

96TiB
Famfs File

System

Server• Re-think What Problems Fit in
Memory

• Multiple nodes can share data in
memory
–Memory is “deduplicated”
–Compute can still scale out
without sharding or duplication

6

Background: CXL Memory Usage Models

• Memory is added as System RAM
(managed by Linux)

• Tiering and migration are viable
(migrate_pages(), TPP, DAMON, etc.)

• Incompatible with multi-host sharing
(memory gets zeroed when Linux “onlines” it)

• It’s possible to provision very large amounts of
memory for jobs that can’t run in 3-4T

• The hardware supports this (CXL3, DCD, etc.)

• Software usage is too complicated

• Famfs is the missing link
– “All” apps can use data in files
– Files already map to memory
– Many apps use big data in files
– RAS “blast radius” is limited to apps that access

the memory

• These cases include
– Both concurrent and sequential sharing
– Other use cases that use Linux memory-mgmt

Pooling Sharing

7

Interleaving is Critical for Memory Performance

• CXL supports hardware Interleaving but…
– The Device Physical address (DPA) range must be identical on all memory devices in an interleaved set
– But “memory devices” are virtual – based on DCD (Dynamic Capacity Device) allocations
– The normal fragmentation of Alloc / Release will make it difficult or impossible to allocate the same DPA

range on, say, 16 allocations from different CXL memories

• Famfs Files Can be Interleaved Across Many CXL Memory Devices
– Famfs has no constraints about DPA ranges

8

Famfs Status: On Track for Linux Upstream in 2025
• Nov 2023 – Introduced famfs at the Linux Plumbers Conference

• Feb 2024 – Famfs V1 Linux patch series released

• April 2024 – Famfs V2 Linux patch series released

• May 2024 – Famfs session at LSFMM
(Linux Storage, File System and Memory Management summit)
– Consensus: Famfs should be merged into fuse
– Work is in progress, in collaboration with the fuse maintainers

• Aug 2024 – Famfs adds interleaved file support

• Nov 2024 – Famfs covered in Storage Newsletter piece on SC24

• 2024 – Famfs in pilot use at CERN, Alibaba, Intel, Universities, etc.

• Sep 2024 – Famfs session at Linux Plumbers Conference

• Feb 2025 – Famfs poster at Usenix FAST Conference

• Mar 2025 – Famfs session at LSFMM & fuse port is imminent
– Famfs documentation:

https://github.com/cxl-micron-reskit/famfs/blob/master/README.md

Famfs Client
Nodes

Shared Memory

Famfs Master Node

mkfs.famfs /dev/dax0.0
famfs mount /dev/dax0.0 /mnt/famfs
famfs cp [-r] <src> <dest>
famfs creat –s <size> <dest>

https://lpc.events/event/17/contributions/1455/
https://lore.kernel.org/linux-cxl/cover.1708709155.git.john@groves.net/
https://lore.kernel.org/linux-cxl/cover.1708709155.git.john@groves.net/
https://lore.kernel.org/linux-cxl/cover.1714409084.git.john@groves.net/
https://lore.kernel.org/linux-cxl/cover.1714409084.git.john@groves.net/
https://lwn.net/Articles/983105/
https://lpc.events/event/18/contributions/1827/
https://github.com/cxl-micron-reskit/famfs/blob/master/README.md
https://github.com/cxl-micron-reskit/famfs/blob/master/README.md
https://github.com/cxl-micron-reskit/famfs/blob/master/README.md
https://github.com/cxl-micron-reskit/famfs/blob/master/README.md
https://github.com/cxl-micron-reskit/famfs/blob/master/README.md

9

Famfs Use Cases

• All apps & tools can access data frames in files

• Data analytics and AI applications share a lot of
infrastructure in the “data frames” and data lake space

• Data frames ecosystem already uses shared data sets
(Already accesses data frames as memory-mapped files)

• Many of these use cases are read-only during the data-
sharing portion of the work-flow

• Putting shared data frames in famfs enables CXL
memory without requiring app modifications
– (workflows may need to be modified, but this class of

apps can easily do that)

• Data lake / data file / in-memory database formats

Great leverage for “data frames” space (analytics + AI)
and in-memory database applications

RocksDB

10

Famfs: Bigger Data In Shared Memory
• RocksDB read-only benchmark

• Famfs benchmarks (Green)
– RocksDB database stored in famfs
– RocksDB instances on multiple hosts can share the

same files/memory
– No modifications to RocksDB (famfs is just files)

• Control Group (Purple)
– RocksDB database stored in xfs backed by nvme
– Cached in DDR; Performance great then it fits in mem

• This data was shown at FMS ’24

• Benefits:4
– Data is de-duplicated
– Or sharding / shuffling is avoided
– Cache line access (less read amplification)

Note: Charts will be replaced with more recent data

11

Famfs Architecture
• All metadata is stored in an append-only log

• Log is written by Master and ”played” by Clients

• V1 handles clients with stale metadata by not supporting truncate or delete

• Metadata handled in user space (library, cli, currently no daemons)

• Read / write / mmap / vma faults handled in kernel

• Memory mapping from famfs == cache-line level access to shared mem

• Many of the limitations can be addressed in future versions

Famfs Client
Nodes

Shared Memory

Famfs Master Node

mkfs.famfs /dev/dax0.0
famfs mount /dev/dax0.0 /mnt/famfs
famfs cp [-r] <src> <dest>
famfs creat –s <size> <dest>

12

Background: CXL Memory Sharing Topology
• Think of a Dynamic Capacity Device (DCD) as a memory device with built-in allocator and access control

• The allocator is necessary for multi-host environments

• DCD (via fabric manager) can give additional hosts access to a sharable allocation, writable or read-only, etc.

CXL.memDirect-attached
memory

/dev/dax System-RAM
Server Linux Sees:

/dev/dax System-RAM

CXL DCD
Linux Sees:

• Nothing, until memory is allocated (Init Dynamic Capacity
Add fabric manager command - 7.6.7.6.5)

• A “tagged” dax device for each successful allocation

• This holds true for DCD in any topology:
• Direct attached, multi-headed (MHD)
• LD-FAM or G-FAM

CXL
Switch

CXL DCD
CXL DCD
CXL DCD
CXL DCD
CXL DCD
CXL DCD

CXL MHD

Sysadmin can convert
between dax and
system-ram mode

Sysadmin can convert
between dax and
system-ram mode

DCD

13

CXL Tagged Capacity Name Space
• DCD is not usable until memory is

allocated

• Allocation (Init DC Add)
(sharable allocations are ”tagged”,
and appear as “virtual” dax devices)

• Tagged dax memory can be “onlined”
as system-ram (non-shared memory)

• Sharable memory can surface
simultaneously or not

• A famfs instance lives on one or more
tagged dax memory instances

• Famfs can also interleave files across
an arbitrary number of Tags

• CXL interleave can be programmed
across multiple tagged allocations*

CXL DCD

/dev/dax/<tag0> Host A
/dev/dax/<tag1> Host A
/dev/dax/<tag2> Host A

/dev/dax/<tag0> Host B
/dev/dax/<tag3> Host B

/dev/dax/<tag0> Host C
/dev/dax/<tag3> Host C
/dev/dax/<tag4> Host C
/dev/dax/<tag5> Host C

14

File System Layer
Technical Details

15

Conventional Files as Memory
• Files [already] map to memory

…if the data is in memory

• When the data is in memory:
– Read/Write are just memcpy()

variants
– Memory mapping assembles the

pages into a virtual address range
that is directly accessed as
memory

• Many are aware of TLBs and page
tables, which resolve a virtual
address to memory
– A TLB + page-table miss results in

a fault() call to the file system to
resolve the file offset to a page

Page 0
Page 1
Page 2
Page 3

Page n-1

…

/data/set0

16

Conventional Files as Memory

Page 0
Page 1
Page 2
Page 3

Page n-1

…

/data/set0
Block

Storage
(SSD, etc.)

• Conventional file systems sparsely cache pages
from a files backing store
– Meaning a fault() call might have to allocate

memory and retrieve data from backing storage

• Pages that are cached (green) are accessed as
memory

• Pages that are not in cache (gray) must be faulted in
from backing store if accessed

• Files [already] map to memory
…if the data is in memory

• When the data is in memory:
– Read/Write are just memcpy()

variants
– Memory mapping assembles the

pages into a virtual address range
that is directly accessed as
memory

• Many are aware of TLBs and page
tables, which resolve a virtual
address to memory
– A TLB + page-table miss results in

a fault() call to the file system to
resolve the file offset to a page

17

Famfs Files as Memory

Huge Page 0

…

/data/set0
Huge Page 1

Huge Page n-1

• Famfs is not sparse; files are
always fully mapped to
memory

• Famfs data lives in [sharable]
dax memory devices

• Huge page mapping reduces
virtual memory mapping
overhead by 512x

• Since the backing memory is
not sparse, there is no
downside to huge page
mapping

• Files [already] map to memory
…if the data is in memory

• When the data is in memory:
– Read/Write are just memcpy()

variants
– Memory mapping assembles the

pages into a virtual address range
that is directly accessed as
memory

• Many are aware of TLBs and page
tables, which resolve a virtual
address to memory
– A TLB + page-table miss results in

a fault() call to the file system to
resolve the file offset to a page

18

Storage Memory
Caching

Local Memory
Allocation

Memory
Sharing

(single host)

Direct/DAX
Memory

Allocation

Memory
Sharing

(Multi-Host
FAM)

File System / VFS Functionality

Conventional file systems

• Storage is block
device

• Storage is
allocate-on-write
or delayed
allocation

• Preallocation
supported
(fallocate, etc.)

• Free on last
unlink (delete)

• Mutated pages
written-back to
storage

• Data is demand-
paged from
storage into page
cache

• Mmap accesses
data in page
cache

• Read/write copies
to/from page
cache

• O_DIRECT I/O
bypasses the
page cache

19

Storage Memory
Caching

Local Memory
Allocation

Memory
Sharing

(single host)

Direct/DAX
Memory

Allocation

Memory
Sharing

(Multi-Host
FAM)

• Anonymous mmap is
lazy allocation from
page cache

• Storage is block
device

• Storage is
allocate-on-write
or delayed
allocation

• Preallocation
supported
(fallocate, etc.)

• Free on last
unlink (delete)

• Mutated pages
written-back to
storage

• Data is demand-
paged from
storage into page
cache

• Mmap accesses
data in page
cache

• Read/write copies
to/from page
cache

• O_DIRECT I/O
bypasses the
page cache

File System / VFS Functionality

Conventional file systems

Anon. mmap

20

Storage Memory
Caching

Local Memory
Allocation

Memory
Sharing

(single host)

Direct/DAX
Memory

Allocation

Memory
Sharing

(Multi-Host
FAM)

• Allocation from the
page cache – no
backing store

• Ramfs and tmpfs do
lazy allocation;
Hugetlbfs does
eager allocation

• Hugetlbfs allocates
from pool of host-
managed huge
pages

• Anonymous mmap is
lazy allocation from
page cache

File System / VFS Functionality

Conventional file systems

Anon. mmap

Ramfs, tmpfs, hugetlbfs

• Storage is block
device

• Storage is
allocate-on-write
or delayed
allocation

• Preallocation
supported
(fallocate, etc.)

• Free on last
unlink (delete)

• Mutated pages
written-back to
storage

• Data is demand-
paged from
storage into page
cache

• Mmap accesses
data in page
cache

• Read/write copies
to/from page
cache

• O_DIRECT I/O
bypasses the
page cache

21

Storage Memory
Caching

Local Memory
Allocation

Memory
Sharing

(single host)

Direct/DAX
Memory

Allocation

Memory
Sharing

(Multi-Host
FAM)

• Anonymous mmap is
lazy allocation from
page cache

File System / VFS Functionality

Conventional file systems

Anon. mmap

Ramfs, tmpfs, hugetlbfs
• Allocation from the

page cache – no
backing store

• Ramfs and tmpfs do
lazy allocation;
Hugetlbfs does
eager allocation

• Hugetlbfs allocates
from pool of host-
managed huge
pages

• Storage is block
device

• Storage is
allocate-on-write
or delayed
allocation

• Preallocation
supported
(fallocate, etc.)

• Free on last
unlink (delete)

• Mutated pages
written-back to
storage

• Data is demand-
paged from
storage into page
cache

• Mmap accesses
data in page
cache

• Read/write copies
to/from page
cache

• O_DIRECT I/O
bypasses the
page cache

• Allocation from
local DAX/SPM

• Storage persistent
if memory is
persistent

• Pmem dev
emulates block dev
for metadata

• Metadata cached in
non-dax memory –
shared mounts
from memory not
supported

Fsdax (xfs, ext4, etc.)

22

Storage Memory
Caching

Local Memory
Allocation

Memory
Sharing

(single host)

Direct/DAX
Memory

Allocation

Memory
Sharing

(Multi-Host
FAM)

• Memory allocation
from sharable
DAX/SPM /
Tagged Capacity

• Append-only log
distributes files
(path, allocation,
permissions) from
master to other
hosts with access

• Anonymous mmap is
lazy allocation from
page cache

• Allocation from
local DAX/SPM

• Storage persistent
if memory is
persistent

• Pmem dev
emulates block dev
for metadata

• Metadata cached in
non-dax memory –
shared mounts
from memory not
supported

File System / VFS Functionality

Conventional file systems

Anon. mmap

Ramfs, tmpfs, hugetlbfs

Fsdax (xfs, ext4, etc.)

Needed: fsdax famfs

• Allocation from the
page cache – no
backing store

• Ramfs and tmpfs do
lazy allocation;
Hugetlbfs does
eager allocation

• Hugetlbfs allocates
from pool of host-
managed huge
pages

• Storage is block
device

• Storage is
allocate-on-write
or delayed
allocation

• Preallocation
supported
(fallocate, etc.)

• Free on last
unlink (delete)

• Mutated pages
written-back to
storage

• Data is demand-
paged from
storage into page
cache

• Mmap accesses
data in page
cache

• Read/write copies
to/from page
cache

• O_DIRECT I/O
bypasses the
page cache

23

How Does Famfs Work
Backup

24

Famfs Architecture
• All metadata is stored in an append-only log

• Log is written by Master and ”played” by Clients

• V1 handles clients with stale metadata by not supporting truncate or delete

• Metadata handled in user space (library, cli, currently no daemons)

• Read / write / mmap / vma faults handled in kernel

• Memory mapping from famfs == cache-line level access to shared mem

• Many of the limitations can be addressed in future versions

Famfs Client
Nodes

Shared Memory

Famfs Master Node

mkfs.famfs /dev/dax0.0
famfs mount /dev/dax0.0 /mnt/famfs
famfs cp [-r] <src> <dest>
famfs creat –s <size> <dest>

25

Famfs Striped Files

• An extent describes each strip
(daxdev_index, offset, length)

Famfs has supported striped files since August 2024

Chunk = 0
Strip = 0
Stripe = 0

Chunk = 1
Strip = 1
Stripe = 0

Chunk = 2
Strip = 2
Stripe = 0

Chunk = 3
Strip = 3
Stripe = 0

Chunk = 4
Strip = 0
Stripe = 1

Chunk = 5
Strip = 1
Stripe = 1

Chunk = 6
Strip = 2
Stripe = 1

Chunk = 7
Strip = 3
Stripe = 1

Chunk = 5
Strip = 0
Stripe = 2

Chunk = 6
Strip = 1
Stripe = 2

Chunk = 7
Strip = 2
Stripe = 2

Chunk = 8
Strip = 3
Stripe = 2

Famfs striped file map

26

Famfs Striped Files

• An extent describes each strip
(daxdev_index, offset, length)

Famfs has supported striped files since August 2024

Chunk = 0
Strip = 0
Stripe = 0

Chunk = 1
Strip = 1
Stripe = 0

Chunk = 2
Strip = 2
Stripe = 0

Chunk = 3
Strip = 3
Stripe = 0

Chunk = 4
Strip = 0
Stripe = 1

Chunk = 5
Strip = 1
Stripe = 1

Chunk = 6
Strip = 2
Stripe = 1

Chunk = 7
Strip = 3
Stripe = 1

Chunk = 5
Strip = 0
Stripe = 2

Chunk = 6
Strip = 1
Stripe = 2

Chunk = 7
Strip = 2
Stripe = 2

Chunk = 8
Strip = 3
Stripe = 2

Strip 0

Famfs striped file map

27

Famfs Striped Files

• An extent describes each strip
(daxdev_index, offset, length)

Famfs has supported striped files since August 2024

Chunk = 0
Strip = 0
Stripe = 0

Chunk = 1
Strip = 1
Stripe = 0

Chunk = 2
Strip = 2
Stripe = 0

Chunk = 3
Strip = 3
Stripe = 0

Chunk = 4
Strip = 0
Stripe = 1

Chunk = 5
Strip = 1
Stripe = 1

Chunk = 6
Strip = 2
Stripe = 1

Chunk = 7
Strip = 3
Stripe = 1

Chunk = 5
Strip = 0
Stripe = 2

Chunk = 6
Strip = 1
Stripe = 2

Chunk = 7
Strip = 2
Stripe = 2

Chunk = 8
Strip = 3
Stripe = 2

Strip 1

Famfs striped file map

28

Famfs Striped Files

• An extent describes each strip
(daxdev_index, offset, length)

• Because chunks and stripes are fixed size, resolving a file
offset to a (strip, offset) pair is order 1

• Chunks must be aligned page-size multiples

• Strips go on separate memory devices

• Famfs can hide discontiguities for free

Famfs has supported striped files since August 2024

Chunk = 0
Strip = 0
Stripe = 0

Chunk = 1
Strip = 1
Stripe = 0

Chunk = 2
Strip = 2
Stripe = 0

Chunk = 3
Strip = 3
Stripe = 0

Chunk = 4
Strip = 0
Stripe = 1

Chunk = 5
Strip = 1
Stripe = 1

Chunk = 6
Strip = 2
Stripe = 1

Chunk = 7
Strip = 3
Stripe = 1

Chunk = 5
Strip = 0
Stripe = 2

Chunk = 6
Strip = 1
Stripe = 2

Chunk = 7
Strip = 2
Stripe = 2

Chunk = 8
Strip = 3
Stripe = 2

Famfs striped file map

© 2024 Micron Technology, Inc. All rights reserved. Information, products, and/or specifications are subject to change without notice. All information is provided
on an “AS IS” basis without warranties of any kind. Statements regarding products, including statements regarding product features, availability, functionality,
or compatibility, are provided for informational purposes only and do not modify the warranty, if any, applicable to any product. Drawings may not be to scale.
Micron, the Micron logo, and other Micron trademarks are the property of Micron Technology, Inc. All other trademarks are the property of their respective owners.

	Famfs: Open Source�Scale-Out Shared Memory File System
	Get Ready for Big Pools of Disaggregated Memory
	Famfs Organizes Shared Memory as a �Scale-Out File System
	What if Data is [Much] Bigger than Memory
	Disaggregated Memory can be Much Larger than System RAM
	Background: CXL Memory Usage Models
	Interleaving is Critical for Memory Performance
	Famfs Status: On Track for Linux Upstream in 2025
	Famfs Use Cases
	Famfs: Bigger Data In Shared Memory
	Famfs Architecture
	Background: CXL Memory Sharing Topology
	CXL Tagged Capacity Name Space
	File System Layer
	Conventional Files as Memory
	Conventional Files as Memory
	Famfs Files as Memory
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	How Does Famfs Work
	Famfs Architecture
	Famfs Striped Files
	Famfs Striped Files
	Famfs Striped Files
	Famfs Striped Files
	Slide Number 29

