
Aug 7th, 2025
AI/ML Track: AIML-304-1

Driving Interconnects
Memory and storage fabrics for new AI/ML workloads

A Panel Discussion on
Architecture, Bottlenecks, and System Requirements

©2025 Conference Concepts, Inc. All Rights Reserved

Moderator:
• Siamak Tavallaei, Samsung Semiconductor Inc.

Panelists:
• Ardavan Sherafat, AI/ML researcher, Cal Poly, Pomona University
• Kurt Keville, Chief Architect, SemiconDx
• Manoj Wadekar, AI Systems Technologist, Meta
• Elizabeth Leake, Advanced Cyberinfrastructure Project Manager, Texas A&M University
• Samir Rajadnya, Principle Architect, Microsoft, Azure

Panelists:

Ardavan Sherafat, AI/ML researcher, Cal Poly, Pomona University
Ardavan is an AI/ML Researcher at Cal Poly Pomona and a recent M.S. Computer Science graduate, specializing in Data
Science, Machine Learning, and AI. With a solid foundation in both academic research and industry experience, he has
contributed to innovative projects in computer vision and natural language processing. He brings broad technical
expertise across programming, machine learning frameworks, cloud computing, and MLOps. He has designed and
implemented a range of applied projects spanning AI systems, cloud architectures, and intelligent automation.

Kurt Keville, Chief Architect, SemiconDx
Kurt works in Research Computing and Systems Design. His MIT thesis work was on energy-efficient supercomputing.
He has investigated research enabling and accelerating technologies that can unlock new programming paradigms for
grand challenge problems. He currently works on a cluster model as a notional Tactical Datacenter design with strong
focus on energy-efficiency, composability, and memory management.

Manoj Wadekar, AI Systems Technologist, Meta
Manoj is a AI Systems Technologist at Meta. He is leading OCP/CMS subproject and has been a great inspiration for
memory and interconnect technologies for AI/ML systems.

Panelists:

Elizabeth Leake, Advanced Cyberinfrastructure Project Manager, Texas A&M University

Elizabeth is a project manager of advanced cyberinfrastructure at Texas A&M University.
She founded STEM-Trek, a global, grassroots nonprofit organization that supports travel, mentoring, and professional
development opportunities for science, technology, engineering, and mathematics scholars from underrepresented
groups and regions. In 2019, Elizabeth formed the Isango project - with the goal of developing a composable,
portable and affordable supercomputer in a suitcase (FPGAs, GPUs, and CPUs). She hopes to make the platform
available to K-20 schools and development teams who build custom-computing solutions.

Samir Rajadnya, Principle Architect, Microsoft, Azure
Samir is currently a Principal Architect in Microsoft's Azure Strategic Planning and Hardware Architecture (Sparc)
team, which is responsible for long-range technology pathfinding for future Azure Cloud systems. Within Sparc, Samir
is part of a team responsible for future memory systems. This team investigates future architecture directions for
Azure and serves as the primary architecture contact point in technical

https://urldefense.com/v3/__https:/protect2.fireeye.com/v1/url?k=54ce166a-35450321-54cf9d25-74fe485fb305-744d5a0579e7fff3&q=1&e=c6977da4-66a0-4791-878d-685504f1fe64&u=https*3A*2F*2Fwww.stem-trek.org*2F__;JSUlJQ!!EwVzqGoTKBqv-0DWAJBm!R7SNCnJWebQ5HkfPGbTaXRjMWZoF6qGvSBpzxrtsM5u570GM8n4b1fCnDn1yD-w2wmwXbdCLpspcdueELox-gDiQ9A$

Retrieval-Augmented Generation
(RAG)

Architecture, Bottlenecks, and System Requirements

2025
AI/ML Track: AIML-304-1

Ardavan Sherafat (ardavan.sherafat@gmail.com)
AI/ML researcher, Cal Poly, Pomona University

mailto:ardavan.sherafat@gmail.com

A machine-learning architecture that integrates information-retrieval with generative models
to provide accurate, grounded, and context-rich responses.

Traditional LLM Limitations:

• Constrained by training data cutoff dates

• Limited context window size

• Cannot dynamically access external data during inference

• Lack domain-specific or real-time information

RAG Advantages:

• No retraining required (unlike fine-tuning)

• Not limited by static knowledge (unlike prompt engineering)

• Provides verifiable, traceable sources for the response

• Handles specialized and frequently changing content

RAG Definition

1. Indexing Subsystem

2. Retrieval Engine

3. Generation Component

Three interconnected components

working together to deliver accurate,

contextual responses.

RAG System Architecture [1]

[1] A. Aminian and H. Sheng, Generative AI System Design. ByteByteGo, Nov. 16, 2024. ISBN 978-1736049143.

RAG Architectural Components

LLM

• Document Processing: Parse PDFs, web pages,

images, and scanned files

• Chunking: Divide documents into semantically coherent segments

• Embedding Generation (An embedding is a way to represent data

(like words or images) as numbers (vectors) so that a computer

can understand and compare them):
• Text encoders (BERT-based Transformers)

• Image encoders (CNNs, Vision Transformers)

• Cross-modal models (CLIP for text-image alignment)

• Vector Storage: Store embeddings in optimized indexes

(FAISS, ScaNN, Elasticsearch)

Words in the 2D embedding space [1]

Indexing Subsystem (Embedding)

[1] A. Aminian and H. Sheng, Generative AI System Design. ByteByteGo, Nov. 16, 2024. ISBN 978-1736049143.

Retrieval Engine (Finding Relevant Information)

• Query Encoding: Convert user query to embedding

using same encoder

• Similarity Search: Nearest neighbor search over

vector index

• Scalability Solutions using Approximate Nearest Neighbor

(ANN) algorithms
• Tree-Based

• Hierarchical Navigable Small World (HNSW)

• k-means clustering

• Locality-Sensitive Hashing (LSH)

• Quality Control: Relevance thresholds, metadata filtering, re-ranking

Note – Vector DB Size Estimate

• 1536-dim embeddings (e.g., OpenAI text-embedding-ada-002)

• Each vector ≈ 6 KB (float32 × 1536)

• 1B vectors ≈ 6 TB raw

• With metadata & ANN index overhead: 12–24 TB typical

• Large-scale systems (e.g., Google, Meta) may exceed 50–500+ TB

Retrieval component [1]
[1] A. Aminian and H. Sheng, Generative AI System Design. ByteByteGo, Nov. 16, 2024. ISBN 978-1736049143.

• Automatic Context Insertion: Retrieved passages automatically added to prompts

• LLM Processing: Model processes query + contextual passages

• Advanced Prompting Techniques:
• Few-shot prompting

• Chain-of-thought (CoT) reasoning

• Role-specific prompting

• Produces grounded, verifiable responses

Generation component [1]

[1] A. Aminian and H. Sheng, Generative AI System Design. ByteByteGo, Nov. 16, 2024. ISBN 978-1736049143.

Generation Component (LLM)

1. Memory Footprint

• Billions of high-dimensional vectors require terabytes of storage

• Memory/disk trade-offs lead to latency from cache misses

• Full in-memory storage improves speed but hits capacity limits

2. Memory Bandwidth

• DRAM capacity isn't enough — bandwidth saturation causes bottlenecks

• CPUs become memory-bound, not compute-bound

• Near-memory processing highlights the dominance of data access time

3. Data Transfer Overheads

• Vectors must cross PCIe or NVLink to reach GPUs

• Multi-GPU setups face traffic congestion and NUMA issues

• Affects responsiveness in interactive applications

Bottlenecks in RAG Systems

4. Resource Fragmentation

• Redundant dataset copies across distributed nodes

• Wastes memory and increases consistency overhead

• Lack of shared dynamic memory limits optimization

5. Generation Phase Limits

• Long-context inference pushes state to CPU memory

• SSD swaps are too slow, large memory is too costly

• Result: truncated contexts, smaller batches, underused model potential

Bottlenecks in RAG Systems

Observations

Architecture, Bottlenecks,
and System Requirements

2025
AI/ML Track: AIML-304-1

Siamak Tavallaei
Senior Principal Engineer, Samsung Semiconductor Inc.

Observations
• We need more memory (compute capability grows with increased memory)

• Workloads use different amounts of the available memory footprint during various
phases in the pipeline

• If we don't provision enough memory, the size of problems we can solve is limited
• If we maximally provision memory, we end up with under-utilized resources

• Resource-pooling based on disaggregated computing helps inflate and deflate available
memory for each processing element at the appropriate phase during the pipeline

• The results show:
• Memory capacity and bandwidth utilization throughout the pipeline stages
• Performance gain when enough memory is available during the critical phase
• With reasonable size of deployed resources (TCO)

• Driving solutions based on simulation and lab analysis through the open-source efforts

Memory Bandwidth Utilization

©2025 Conference Concepts, Inc. All Rights Reserved

Memory System Bandwidth
(DDR5 + CXL Memory)

Aggregated Read B/W of
Weighted Interleaving (4:1)

636GB/s

Memory System DDR5 Bandwidth
(DDR5-only Memory)

Read B/W : 539GB/s

DDR Memory Usage

CXL Memory Usage

Observations
Data-retrieval & Search Techniques (Databases)

• MemCacheD

• Vector DB

• Key-Value Store and KV-Cache

• Mem expansion (large memory footprint to keep processed data and to process more!)

• Memory pooling (expand and deflate memory footprint for different phases of the flow)

• Memory sharing (for reducing communication time and energy overhead)

• Near-memory & In-memory Processing

Pre processing
• Encoding, Embedding

• Document processing
• organizing and structuring unstructured data from different input types)

• Reducing data-transfer through summarization and compression

• All-Reduce, All-Gather, …

• Check-pointing & Restart

• Agentic Role-back

RAG Flow C hart

G
en

er
at

io
n

A
u

gm
en

t
R

et
ri

ev
e

Source: Samsung FMS presentation, Aug 2025

AI System Trends

2025
AI/ML Track: AIML-304-1

Manoj Wadekar
AI Systems Technologist, Meta

AI Systems Memory Trends:

Memory capacity needs continue to grow
• Driven by model sizes (in addition to activations, KV Cache etc)

Capacity needs drive Tiered memory solutions
• Tier 1 Memory bandwidth needs getting satisfied by HBM community with

roadmap
• HBM4, HBM4e..

• Tier 2 Memory
• Host attached or GPU attached

• DDRx: Form Factors for capacity and bandwidth needs (RDIMM, MRDIMM)

• LPDDRx: RAS, Form Factors

©2025 Conference Concepts, Inc. All Rights Reserved

AI Memory Fabrics:
Local and Scale-Up networks

Local Memory Interconnects:
• Provides Tier 1 (HBM) and Tier2 Memory (DDRx, LPDDRx)

Accessing memory on other accelerators (e.g. Collectives)
• Connecting to other devices with memory semantic fabrics

• (E.g. CXL, NVL, UAL, RDMA (IB/RoCE)..)

• High-bandwidth, Low-latency, SW-coherent,

• Memory Semantic (Load/Store), Channel Semantic (DMA, Send/Receive)

• Scale-up network sizes:
• 8 -> 72 -> 144 ->..

©2025 Conference Concepts, Inc. All Rights Reserved

How Academia sees Bottlenecks in
RAG Systems

2025
AI/ML Track: AIML-304-1

Kurt Keville, (kurt@semicondx.com)
Chief Architect, SemiconDx

1. Memory Footprint

• Historically, Research Computing (RC) Datacenter sysadmins recommend traditional workarounds for memory bound
HPC applications. University support teams are already using standard practices for IT management and support. Users
generally get a filesystem space allocation and if they need more space they can attach and use a temporary partition
for a limited period of time. If they need more space for a memory-centric job, they can create a swap partition on that
filesystem. Likewise, most Universities will offer to advise on RDMA, NUMA and remote memory coding techniques.

• These are generally services provided by the University support staff and are not fixes that are expected of the
application programmers. To that end, many schools offer classes and consulting services for these advanced processes.

2. Memory Bandwidth

• University RC services preach the gospel of “Reduce, reuse, recycle.” They are highly motivated to train students up on
efficient coding practices to lower the electricity bill at their shared services. The incentive for the students to write
(energy) efficient code is that their jobs will run faster. Programmers learn and utilize the practice of determining which
values are candidates for cache and hot memory location management, and in turn they rewrite their code accordingly
to take advantage of that.

3. Data Transfer Overheads

• Reassess and profile application code to keep as much work on the initiating server. Data movements that cross
boundaries (system memory bus to PCI bus or PCI to network card, etc) are considerably more resource intensive than
otherwise. Here again, there are tutorials on how to make production codes data parallel.

How Academia sees Bottlenecks in RAG Systems

4. Resource Fragmentation

• Dedupe is already quite popular at RC centers in academia. If you want to use a framework that is common and
which a lot of students are already using, you can perform a simple conda install, often at login if you use it a lot.
Many students still perform a full pip install if they are not sure of the library versions, but they use the rewritable
partition for that. Ideally, the sysadmins can write lock memory as well as filesystem locations. This has been very
difficult to manage.

5. Generation Phase Limits

• Many of the features that we considered assets of SSD are no longer priorities in this community. We do not need to
save much of the interim data generated by student programmers. They sometimes save object files if they believe
there is an archive requirement but students traditionally perform a ”make clean” operation whether they need to or
not since it requires the least amount of debugging of a build. To that end, an operation of this sort is best performed
on a ramdisk or equivalent. The potential for creating these data structures are facilitated by CXL. Now, not only is
the sysadmin resigned to the end user exercising legacy compilation techniques but they may recommend it now if it
is the best operation.

How Academia sees Bottlenecks in RAG Systems

25

Why CXL?

ACES | u.tamu.edu/aces | ACES Workshop 2025 | NSF Award #2112356

ACES
Disaggregated, composable platform at

Texas A&M University

Elizabeth Leake

26

27

Why CXL? Lessons Learned in Academia

40-year trajectory unsustainable (old standard inefficient/energy/storage)

• Next-gen arithmetic promising

HPC for general use can't easily support fully-composable elements

• Training and development best accommodated with small platform, like Isango

Large models require agile memory (I/O, cache); CXL® facilitates data management

• Plethora of memory solutions emerged to solve this issue - again, it isn't sustainable

Agency-funding slow. End-to-end can be a year (one or two new iterations released in that timeframe).

• Spec open-ended agreement where vendor provides new hardware as it is released

Reasons for
Additional memory attach

2025
AI/ML Track: AIML-304-1

Samir Rajadnya
Principle Architect, Microsoft, Azure

Reasons for additional memory attach

©2025 Conference Concepts, Inc. All Rights Reserved

CPU Platforms:
Memory stranding

As CPU cores increase, more memory is required
(maintain core:memory ratios)

Memory is not scaling at the same rate as CPU
cores

Higher capacity DIMMs (3DS) cost ~2x of lower
capacity DIMMs

Sometimes we need more capacity than possible
through locally attached

Long term, CPUs may move away from multi-
socket architectures

GPU Platforms:
KV-Cache

HBM capacity limitation

©2025 Conference Concepts, Inc. All Rights Reserved

©2025 Conference Concepts, Inc. All Rights Reserved

©2025 Conference Concepts, Inc. All Rights Reserved

©2025 Conference Concepts, Inc. All Rights Reserved

©2025 Conference Concepts, Inc. All Rights Reserved

GPU shoreline => HBM capacity limitation => Additional memory attach points

Interconnects

©2025 Conference Concepts, Inc. All Rights Reserved

PCIe is everywhere

CXL® has reached maturity

New emerging interconnects solve limitations of
PCIe/CXL

Time-to-market is important.

Think what we can do right now with what is available!

Extra

Potential HW Solutions

2025
AI/ML Track: AIML-304-1

Siamak Tavallaei
Senior Principal Engineer, Samsung Semiconductor Inc.

Memory Pooling/Sharing

Local Mem (32 x RDIMMs)

C

C

2S Servers
4 x CXL Memory Controllers

x8 CXL Links

8 x DDR5 Channels per CPU (2DPC)
2 x 8 x 2 x 64 GiB = 2 TiB per server

Memory Bandwidth and Capacity Expansion

CMM-D

CMM-D

CXL Mem (E3.s): 256 GiB per CMM-D
4 x 256 GiB = 1 TiB per server

x8
CXL

DDR5

CMM-D

CMM-D

Baseline:
• RDIMMs are the baseline.

More Bandwidth:
• MRDIMMs offer more bandwidth. They can offer more

capacity in a Tall DIMM form factor.

More Bandwidth, Capacity, and Pooling/Sharing:
• CXL memory modules offer more bandwidth, even more

memory capacity, and provide a means for memory-
pooling/sharing to inflate and deflate memory footprint
during different phases of the AI/ML pipeline.

• Reduce overall TCO

RDIMMs
MRDIMMs

RDIMMs
MRDIMMs

M

M

Local Mem (32 x RDIMMs)

C

C

M

M

4 x DDR5 Channels, 2DPC
4 x 2 x 256 GiB = 2 TiB

Two 1S Servers
4 x CXL Memory Controllers

x8 CXL Links

8 x DDR5 Channels per CPU (2DPC)
2 x 8 x 2 x 64 GiB = 2 TiB per server

Memory Expansion + Memory Pooling (CMM-D & RDIMMs)

CMM-D

CMM-D

CXL Mem (E3.s): 256 GiB per CMM-D
4 x 256 GiB = 1 TiB per server

x8
CXL

DDR5

Pooled/Shared Memory
256 GiB RDIMMs

4 x 8 = 32 DIMMs
1280 DRAM devices

32 x 256 GiB = 8 TiB per server

CMM-D

CMM-D

2 x 1S x 4 x 8

Two 1S servers and 4 MCs
using x8 CXL Links

Memory Pooling/Sharing with ten 2S Servers,
8 Switches, and 160 CMM-Ds

S

S
C

C

C

C

C
S

10 x 2S x 8 x 8

10 x 2S Servers
8 CXL Switches

x8 CXL Links
160 CMM-Ds

40 TiB of Shared DRAM

C

C

C

C

C

S

S

S
C

C

C

C

C
S

C

C

C

C

C

S

Four Switches
Ten CPUs

using x8 CXL

Four Switches
Ten CPUs

using x8 CXL

Four Switches
Twenty CMM-Ds each

using x8 CXL

4 x 20 x 256GiB = 20TiB

Four Switches
Twenty CMM-Ds each

using x8 CXL

4 x 20 x 256GiB = 20TiB

4 x 20
x8 CXLCMM-D

CMM-D

CMM-D

CMM-D

CMM-D

CMM-D

CMM-D

CMM-D

CMM-D

CMM-D

CMM-D

CMM-D

CMM-D

CMM-D

CMM-D

CMM-D

S

S
C

C

C

C

C
S

10 x 2S x 8 x 8

10 x 2S Servers
8 CXL Switches

x8 CXL Links
8 CXL Switches

8 x 10 x 8 = 640 RDIMMs
160 TiB of DRAM

C

C

C

C

C

S

S

S
C

C

C

C

C
S

C

C

C

C

C

S

8 x RDIMMs per AIC: 2 Ctls, 2 Channels, 2 DPC
4 x 10 x 8 x 256 GiB = 80 TiB

8 x RDIMMs per AIC: 2 Ctls, 2 Channels, 2 DPC
4 x 10 x 8 x 256 GiB = 80 TiB

Memory Pooling/Sharing with ten 2S Servers,
8 Switches, and 640 RDIMMs

Four Switches
Ten CPUs

using x8 CXL

Four Switches
Ten CPUs

using x8 CXL

CXL® Demos at Samsung Booth

Backup

RAG Flow Chart

G
en

er
at

io
n

A
u

gm
en

t
R

et
ri

ev
e

Among Many AI Applications, why RAG?

• Selected in real world

- No one can have a huge foundation model and the way to increase accuracy
by using RAG in a lightweight small LLM model is becoming a trend.

• Requires a lot of memory and has bandwidth-intensive characteristics

- The size and size of the dataset continue to increase and index building for embedding
and search requires a larger memory than the original data.

- The Approximate Nearest Neighbor Search (ANNS) method for vector search is bandwidth sensitive,
so when bandwidth increases, performance also increases.

Retrieval- Aug m ented Generation (RAG)

• Can be performed on CPU

- Almost the only AI application that is more advantageous in CPU than GPU,

giving optimization opportunities to memory products (DIMM, CXL, SSD) other than HBM.

Source: Samsung FMS presentation, Aug 2025

Samsung Platform for Evaluating CMM-D in RAG Cluster

*RAG Test Suite
: Provides query search evaluation and management on the RAG platform.

Executes queries ag ainst data.

C reates m anag es indexes for
data retrieval.

S tores and m anag es data.

RDIMM CMM-DRDIMM CMM-D

*RAG Test Suite QPS Recall

RDIMM CMM-D RDIMM CMM-D

Source: Samsung FMS presentation, Aug 2025

Advantages : Workload Distribution
Provides sustainable performance through workload separation to CMM-D.

• The data server’s workload consists of query node, index node and data node can operate simultaneously.

• Separating the query node and index node workload into RDIMM and CMM-D maintain QPS of data search.

Normalized performance result
by node location

1

A

1.07

B

1.2

C

RDIMM

CMM-D

1 23 4 5

(b) Query Node in RDIMM Index Node in CMM-D

5

1 2 3 4

(c) Query Node (w.i. 4:1) Index Node in CMM-D

1 2 3 54 1 2

(a) Query Node & Index Node in RDIMM

Query Node

Index Node

RDIMM BW (Max) : 550 GB/s

A B

S
o
u
rc

e
:
S
a
m

su
n
g
 F

M
S
 p

re
se

n
ta

ti
o
n
,
A
u
g
 2

0
2
5

48

What is a RAG Pipeline

Figure based on[1]

[1] Accelerating Data Retrieval in Retrieval Augmentation Generation (RAG) Pipelines using CXL - MemVerge

Core components
• Data
• Model
• Embeddings
• Query

Phased Approach
• Generate Embeddings

• Memory demand spikes
• Running the pipeline

• Based upon the app

Memory Demand

https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/the-cost-of-compute-a-7-trillion-dollar-race-to-scale-data-centers
https://memverge.com/accelerating-data-retrieval-in-rag-pipelines-using-cxl/

Up to 19% higher performance with CMM-D in VectorDB search compared to DRAM case in Milvus RAG cluster

• Performance gain with bandwidth expansion through the CMM-D in Milvus RAG Cluster

• Using SW interleaving (between DRAM and CMM-D) to achieve optimal CXL bandwidth performance

Compute Express Link® and CXL® are trademarks of the
Compute Express Link Consortium.

**Weighted Interleaving

• Linux kernel SW weighted interleaving provides opportunity to define
an interleave ratio to best utilize DRAM and CXL memory for optimal
performance in a workload

• Included in Kernel Mainline (v6.9)

Applications

Kernel

NUMA 0 : RDIMM NUMA 1 :CMM-D

Weight: 3

1 2 43

Weight: 1

Pages

Weighted interleaving

Advantages for RAG Cluster with CXL Memory

Vector Search Performance Result with CMM-D

11.28

22.87

34.08

46.07

13.19

27.60

40.60

54.88

0

10

20

30

40

50

60

1 Server 2 Servers 3 Servers 4 Servers

Q
P

S

Comarison of QPS by Number of Servers

dram only
(baseline)

dram+cmm-d
 (w.i. 4:1)

TCO reduction effect and memory expansion effect can be secured

• Equivalent QPS/$ and 40% reduction in $/GB cost

• Operating Power reduction through application can reduce operating cost.

Advantages with CMM-D in RAG Cluster

50
Compute Express Link® and CXL® are trademarks of the

Compute Express Link Consortium.

1
1

0.99 1.01

0

0.4

0.8

1.2

 -

 0.4

 0.8

 1.2

RDIMM 4TB 4servers RDIMM+ CMM-D 8ea 8TB
4servers

RDIMM+ CMM-D 8ea 6TB
3servers

RDIMM+ CMM-D 8ea 4TB
2servers

Q
P

S/
$

$
/G

B

Server Configuration

TCO reduction with CMM-D

$/GB QPS/$

$/GB cost reduction 40%

Raw Size
Indexing

Size(HNSW)
Entity Count Dimension Precision Vector Size

290GB 673GB 138 Million
1024

(cohere)
FP32 4096B

Dataset : MSMARCO-V2

Reference TCO Calculator :https://v0-cxl-tco-2-nvdatd.vercel.app/

https://v0-cxl-tco-2-nvdatd.vercel.app/

Memory Bandwidth Utilization

©2025 Conference Concepts, Inc. All Rights Reserved

Memory System Bandwidth
(DDR5 + CXL Memory)

Aggregated Read B/W of
Weighted Interleaving (4:1)

636GB/sMemory System DDR5 Bandwidth
(DDR5-only Memory)

Read B/W : 539GB/s

Memory Bandwidth Utilization

Observations

• We need more memory (compute capability grows with increased memory)

• Workloads use different amounts of the available memory footprint during various
phases in the pipeline

• If we don't provision enough memory, the size of problems we can solve is limited
• If we maximally provision memory, we end up with under-utilized resources

• Resource-pooling based on disaggregated computing helps inflate and deflate available
memory for each processing element at the appropriate phase during the pipeline

• The results show:
• Memory capacity and bandwidth utilization throughout the pipeline stages
• Performance gain when enough memory is available during the critical phase
• With reasonable size of deployed resources (TCO)

• Driving solutions based on simulation and lab analysis through the open-source efforts

Session Outline

Track: AI/ML

Session: AIML-304-1 (Thurs 1:25pm-2:30pm) (Panel)
Title: Driving Interconnects: Memory and storage fabrics for new AI/ML workloads

Abstract:
AI/ML applications demand on memory sub-system is driving higher memory performance, lower
latency, and increased capacity requirements. Memory-tiering supports the first two metrics by
offering different memory technologies; however, the traditional method of addressing a larger
virtual memory footprint has relied on storage-class solutions such as NVMe SSDs. Innovations in
interconnect standards such as CXL and UALink as well as advancements in PCIe and Ethernet
physical layers help support higher date-movement requirements, while innovations in memory
buffer-caching with SSDs enable increased virtual-memory capacity without significantly impacting
latency. This panel provides different perspectives on the role of storage and related memory
architectures that support the growth in AI/ML application requirements.

Panel Format: (60 min)
• 35 min: (four panelists)

o 11 min: RAG Workflow and bottlenecks as a representative example (several slides)
o Three 8-min presentations with 2-3 slides to set the background for each panelist along with a commentary

• 15 min panel Q&A for all panelists (suggest questions)
• 10 min audience Q&A

Content:
• Overview of applications, algorithms, software flow diagrams, block diagrams, etc
• Decomposition of the requirements into Compute, Memory, Storage, & Interconnect

o Compute: GPU, CPU, and xPU
o Memory: Latency, BW, and Capacity
o Storage: IOPS (and Capacity)
o Interconnect: Scale-Up, Scale-Out, Networking, etc

• Use-cases:
o Training & Inference
o Gen AI & Ranking/Recommendation
o KV-Cache & RAG

• Gaps and bottlenecks

• Solutions:
o Current HW Block Diagrams
o Future roadmap

Q&A

1. How are AI/ML workloads affecting memory and storage requirements?

2. What are the new aspects of AI/ML that are different from the needs of traditional database and HPC applications?

3. What are the new bottlenecks that AI/ML workloads expose? (memory, storage, and interconnect)

4. How are we addressing these requirements using the current hardware and software techniques?

5. What new techniques will we need?

