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Agenda

1. AI Inferencing Steps and Performance Measurement in PCs

2. AI Inferencing Traffic
a) Model Loading in AI Benchmarks
b) Field Usage: Multi-model, Multi-modal, RAG

3. Uniqueness of AI Inferencing Traffic
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AI Inferencing 
for PCs
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Inferencing on PCs

• AI Inferencing involves 3 main steps: loading the AI 
model, process user query, generate response

• Inferencing performance for LLM is measured using 3 
main criteria
1. AI model loading time: loading model weights to GPU
2. Time to first token (TTFT): processing user query and 

prefill/initialize kv cache
3. Tokens per second (Tok/s): measures inferencing 

performance after the first token

• Model loading time is dependent upon
– SSD performance
– AI framework (software stack, processor, etc)
– Model (size, type, gen, etc)

• TTFT is dependent on GPU processing power, since 
prefilling/initializing the kv matrix is compute intensive

• Tok/s is memory IO bound, dominated by kv cache read 

• In many cases TTFT and Tok/s are also SSD 
performance bound
– In multi-model scenarios, AI models in background could be 

discarded from memory to free space, and needs to be 
reloaded when user query arrives

– In RAG scenarios, index searching for user query involves 
loading relevant index from disk to memory; data chunk 
retrieval needs to read data from disk

– As KV matrix grows, may need to swap to disk
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AI Inferencing Traffic 
Patterns and IO BW
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Model load time Disk Read BW

• Model loading BW is affected by
1. SSD BW and optimizations
2. AI model
3. Run time framework
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Llama and Ollama Model Loading Patterns

Onnx Ollama 

Disk Read Pattern
• Onnx run time (ORT) is less optimized than Ollama when 

loading models

• Onnx model loading exhibits random read patterns, 
instead of Ollama’s multi-stream sequential read 
patterns

– Versions of Ollama can saturate NVMe BW when loading 
models

• Latest Onnx RT shows improvement in generating 
sequential read patterns and higher BW during model 
loading
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Mistrallite Model Loading with Ollama 

• Mistrallite NN model loaded with Ollama (v0.1.10)
– About ~3.9GB is read 

• Disk read saturates PCIe BW

• QD is high

• Read payload at MDTS

• Multiple stream sequential reads

Composite

Gen 4x4 A
Gen 4x4 B
Gen 5x4
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Mistrallite NN Model

• Between 2 to 5 streams are 
used to read the entire file in a 
mostly sequential fashion

• Zooming in on Gen5 drives shows 
that one queue ID corresponds to 
one sequential stream

Read Sequence

T705 Read Pattern by QID

Composite
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Gen 4x4 B
Gen 5x4
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Multi-Modal NN

• Multi-modal NN can have either multiple types of 
inputs, or multiple types of outputs, or both

• Tested Llava model which is a multi-modal NN with 
multiple types of input (image and text) and a text 
output
– Combines a vision model (VTi) with Vicuna LLM (13B, 

8GB) for general purpose visual and language 
understanding

Model Architecture
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Multi-Modal NN

• Loading pattern is model 
dependent
– Vision model: single 

stream sequential read, 
smaller payload size

– LLM model: higher 
BW/QD, multiple stream 
sequential read, large 
payload size (MDTS)

Llava Loading on Ollama
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Multi-Model NN

• Multiple models (4) running concurrently in the 
same Ollama framework
– Llava 13B(8GB), qwen2.5(4.7GB), gemma2(5.4GB), 

llama3.1(4.7B)

• Combined model size greater than physical 
memory capacity
– Query only a single model at a time, rotate which 

model is queried

• Model weights and active user data are periodically 
swapped in/out, making SSD BW a gating factor
– When memory is full, memory is freed by discarding 

existing models in memory, not by swapping out
– When a model is needed again, it is reloaded from disk
– Only ~500MB of live user data (not models) are 

swapped out to disk into virtual memory (pagefile.sys), 
50% in foreground

Model loading 
at first query

Model re-loading
At subsequent queries
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Multi-Model NN

• Models are reloaded from disk during user query in 
multi-model scenario
– This gates query response time

• A significant portion of swap-outs occur during 
model reload (250MB out of 500MB)
– SSD write BW gates model reload and thus 

query response time

• Disk swap outs are large sequential writes

• Sequential reads and mixed read/writes can impact 
Tokens-per-Second
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Physical Memory Availability

• Majority of memory reclamation comes from 
discards

• Swap-out writes to virtual memory is an order of 
magnitude smaller than reading from disk
– 500MB total

• Conjecture:
– Live user data from other non-AI apps are 

swapped out to disk, in order to free memory to 
load models

– Models are simply discarded from memory if 
more space is needed

– KV cache will eventually be swapped out to disk

Composite
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RAG
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Composite• Vector DB (>7x expansion) is multi-level and is too large to be stored entirely in memory, split into level-
0 and SQL and stored on disk
• Level-0 loaded along with LLM from disk into memory (sequential read, low QD)
• Similarity search loads SQL DB OTF from disk for every “cold” query, gates query latency

• Sub-512B of index generates 4kB payload• RAG used to optimize LLM with private and 
updated user data
• Eg, Itinerary, Perfect Shot, Recall

• User query is augmented with relevant local 
documents 

• LLM is used twice, picking relevant history 
and generate response

• Docustore is a DB of chunks of 
user documents (3x expansion)

• Top ~10 most relevant 
document chunks are read from 
disk
• Small 4k random reads

LLM Inferencing
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Rag

• Loading sequence:
1. Level-0 index (2.5GB) loaded at first

- Small sized single stream sequential read, lower QD, 
500MB/s

2. LLM model (5GB) loaded next
- Large sized multiple stream sequential read, higher 

QD, 2.5GB/s

3. After user query, portion of SQL DB 
(150MB/6GB) loaded for similarity search

- 4kB random read, QD 1, 50MB/s 
- 100k 4k reads into ~150MB of LBA range for single 

query, many cache hits
4. Document chunk loaded (several 4kB)

- 4kB random read, low QD

5. SQL DB loaded for every “cold” query

Model and Database Loading

50MB/s SQL vector DB loading

LLM Loading

Level-0 DB
Loading

Composite
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Unique Characteristics of AI Inferencing Traffic

• Uniqueness of AI traffic affords opportunity to target these traffic for performance improvements
1. Multi-stream sequential reads
2. Large volume (GB levels) of continuous read operations
3. Mixed read/write patterns:

- SR+SW for memory swapping

Summary
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