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& ' Reuters

America's largest power grid is struggling to meet demand
from Al

Electricity bills are projected to surge by more than 20% this summer in some parts of
PJM Interconnection's territory, which covers 13...

FT Financial Times

Hitachi Energy says Al power spikes threaten to destabilise
global supply

Big Tech's spiking electricity use as it trains artificial intelligence must be reined in by
governments in order to maintain stable...
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7 Tom's Hardware
Al is eating up Pennsylvania's power, governor threatens to
pull state from the grid — new plants aren't being built fast
enough to keep up with demand

Spiking demand is sending energy bills skyrocketing, while the governor threatens to

) pull the state from the grid.
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In an interview with the Financial Times, Hitachi Energy CEO Schierenbeck urged
B government action on Al's unpredictable power demands.
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Designing for energy efficiency is a growing concern

NON-PROFIT _ eENERGY NATIONAL LABS
Hasso %%

enees [ <BRDG OAK RIDGE
oy Institut l Pacific National Laboratory

» " @ 5 intel SLAT Rt Argonne &
Semiconductor = = v
e St 6 (fnfineon M ©omoceer Juag o
Ll @) IE E E AMDZ . Idoho Nafional lcbomrory s ialelen
0 EARTH ICT, SPC Noaaneen ~=— . Microsoft ﬂ’ '-' CL Lawre och %
SEVICONOUCTORS LI vermore
“:“;’,":L, )) PPPL
n 6 Seny SI EM ENS F If\UUﬂUE GO gle quh§§a!§h BER“ELEV S PLASCMEA?’ HYSICS
IPTEK MULTI 3D ﬁa?d'a : LABORATORY
(TR - energetlcs s:pixelligent snowcap o cocele o IR Loomoies SE Fermilab
— A Cassia.ai
zyvex \ (92) UNIVERSITY of oo
" synoesys [ @ w‘ UF\FLORIDA g W
W TENNESSEE
m ) II{MD (aden(e @:m ﬁETFE)HEL% SIXLINE / ||Ifl ed B o e ke
' DedaloAl B Hve=RON B o [T RIVERSIDE
ki s DEXMAT {PARAGRAF gearmice - | ) LATTC
ITH & CRYSTAL CARBON 4]

TECHNOLOGIES Mbtlg (‘F’?Icron @ VVVVVVVVVVVVVV r Duke l"l‘ ATOMS

Mluosvthx V7OLLEl_-] u"
Silicon LIQID @]l University of Colorado
_ INDUSTRY Boulder
—
—Ms 3
— the Future of Memory and Storage

©2025 Conference Concepts, Inc. All rights reserved




ERGY PRODUCTION

On the current trajectory of energy 1000 PLANETARY HUMAN EN
use versus energy production,

~
e 100
THESE CROSS OVER IN 2055 < e
= W
EES2 program goal is 1000X 8 10
——
improvement in energy efficiency g o e BIENNIAL
over the next 20 years S b T - e =
> M.;'."" =
This program is not US-centric g::’ : Ith EEs;
All countries are invited to % .
participate Ll I I I
2000 2010 2020 2030 2040
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Terawatt-hours (TWh)
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20.9% of projected
8000 m Networks (wireless and wired) e Lot
M Production of ICT
7000 = Consumer devices (televisions,
computers, mobile phones)
6000 W Data centers
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Source: www.nature.com
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| most energy is used for communications, not logic
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You can’t solve a problem if you can’t name it

EES2 Phase 1 report identified where we are spending power

Also, what technologies can improve efficiency

Phase 2 began in June 2025 to initiate action

Conclusion: we are better at moving data around
than we are at operating on that data
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Supercomputer Instruction
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27 to 36 orders

of magnitude
(From Algorithms
to Atoms)

Part of the looming energy
crisis is fundamental
inefficiencies of
applications and
programming languages

Python programming is
orders of magnitude less
energy efficient than C
programming (ChatGPT is
Python-based)

Cryptocurrency in
particular consumes 20.8%
of world energy resources

already
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There is no silver
bullet that fixes
everything

The DoE has identified
a wide variety of
incremental solutions
to address the power
crisis
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TRL: Technology Readiness Level

Circuits and Architectures

=
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ReRAM vs NAND
STTRAM vs NAND
NRAM vs DRAM
ReRAM vs DRAM
CNT NVM

Metis SRAM
Molecular dynamics ASIC

FPGAs for machine vision

SRAM stacked 3D DNN accelerator

MIV stacked ReRAM

HBM Cache

Neuromorphic memcapacitive devices
Neuromorphic memristor matrix multiplier
Neuromorphic asynchronous computing
CMOS SRAM CIM

CXL optimized DDR5

Advanced Packaging & Heterogeneous Integration

1
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LMP solder with polymer
Nanostructured thermal interface surface
CNTTIM

Graphene TIM

Graphene interconnects

CNT interconnects
Rh/Irinterconnect

CNT for 3D ICs

3D IC MIVs

Feveros

TSVfor3DIC

Hybrid bonding (Cu-Cu)
Optical off-chip interconnect
Optical on-chip interconnect
Optical bus

UCle chiplet standard

3D stacked SRAM

MIV stacked ReRAM

HBM on logic

Algorithms and Software

1

0 - & 0 s WM

Reduced energy for ML algorithms
Algorithm-specific energy (tooling)
Algorithm-specific energy (benchmarking)
Languages, compilers, and runtime systems
Communication protocols

Homomorphic encryption

Software for emerging architectures
Computational reliability

Materials and Devices

e
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Si-GAA

CNT Memory

CNTFET (Logic)

TFET

Spintronic memory
FeFET (Flash)

Analog devices for neuromorphic computing
FeFET (SRAM)

Contact & interconnect
Novel ILD

Spintronic logic

2D materials
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Simplified but realistic case of program execution and data movement

Each transfer takes time

()

Each transfer imposes
inefficiency

P =
\ ﬁ'€.~ 4")
e Communications .
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Typical application flow

1.

App read from disk
through CPU to RAM

App read from RAM to
CPU for execution

. Info read from I/0

through CPU and
written to RAM

App reads RAM to
process

. App writes results to

disk

mes -



Speculation

Systems like to
do block data
moves to “pay”
for latency
overhead

How often does speculation pay off in terms of operations/watt?

—MS 9
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CPU registers have an intrinsic waste
with various size data types

CPUs have all added caches for
recently accessed data
If an application needs a
Industry standard is 64 bytes yes or no answer (1 bit)
per cache line
But accesses a cache line
(64 bytes)

64 Byte Cache Line

Waste = 99.8%

Discrepancy between cache line
size and data item size creates
significant wasted data access

=5 ) [
u.:-- '\ ,‘
=M z P 10
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L1: 96% hit rate, 1 cycle access
L2: 95% hit rate, 25 cycles access
L3: 98% hit rate, 80 cycles access

The good news: near-CPU caches do have high hit rates
(reduces waste from unnecessary accesses)

Mmmwmmw Eaceerrarreacr—eroens i ) crion | have posed that
Shguon | i CPU guys refuse to answer:
By the time an access gets to the local o |
DRAM, though, hit rates start to drop 0% How much performance gain
dramatically v kL L - .. are we getting for each watt
Read hit ~82% = e | expended?
Write hit ~62% @ O EEN T
" BF 1_ ] i ESPECIALLY when it comes to
o | B mﬁ!.: e e speculative operations
e DaeTie-1 sPu -
g 12
gé o Access to remote memory drops even further,
C’z 06 | especially with increased thread count
E; os | Hit rate ~65%
Z 00 ; , . :

...and this is before memory pooling...

https://www.futureplus.com/blog/critical-memory-performance-metrics-for-ddr4-systems-page-hit-analysis

https://arxiv.org/pdf/2303.15375#:~:text=Meanwhile%2C%20as%20the%20block%20size%20increases

L QA - ”‘ %20beyond,latency%20begins%20t0%20dominate%20the%20p99%20latency. mps
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64 byte
cache line

Rows

Page Buffer

the Future of Memory and Storage
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10KB block
X2

RAMs are grouped in 10s to form a “rank”

Each RAM has a 1KB page buffer size (access granularity)
Activations are destructive and data rewrite is needed

Therefore, every data access requires 20KB of data movement

Waste = 99.7%
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Facebook RocksDB

mUDB mZippyDB ®mUP2X

X (Twitter) Twemcache

100% 10
90% ™
so Co.8
70% 0
60% g
50% $0.6
40% E
30% 0.4
20% S / —— storage
10% I =1 / L )
0% I_ —_n = | 1 § 0.2 P computation
N & @ 2 w ! ===+ transient
¢ Ay o & &% 0.0 -
°© ‘%@0 W« ’ 162 163 10% 10°

Object size (Byte)

The average key size (AVG-K), the standard deviation of
key size (SD-K), the average value size (AVG-V), and the
standard deviation of value size (SD-V) of UDB,
ZippyDB, and UP2X (in bytes)

64B cache line AVG-K SD-K AVG-V SD-V
UDB 27.1 2.6 126.7 22.1
ZippyDB  47.9 37 429 26.1

UP2X 10.45 1.4 46.8 11.6

Typical disk block transfer size is 4KB

Average number of bytes actually used is 100

Waste = 97.5%

This is Best Case... even worse if the block is cached

mes -



Red UCIng Power &

1. Let’s get smarter about speculation accesses and do a TCO analysis on each
2. Consider the number of data hops implied by each access
3. Move the processing to the data when possible, not the data to the processing

4. Let’s work on protocols that minimize unnecessary data movement

)
—MS 14
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Introducing New Memory Tier Options A
Cache

HBM

The resource tier map keeps getting
more complicated

The same factors apply:
speed, latency, capacity, cost

NUMA DRAM 1 Hop

CXL DRAM Direct

Don’t blink. It will change again

(Possibly before | finish talking)

J—
—MS 15
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Relative Access Latency

CXL Memory

CXL
switch

CXL Memory

CXL
switch

CXL
switch
CXL Memory

LPDDR direct
DDR DIMM direct

DDR DIMM NUMA 1 hop
DDR DIMM NUMA 2 hops
DDR CXL direct
DDR CXL 1 hop

DDR CXL 2 hops

JR—
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NUMA doesn’t have to be just about sharing memory

Job distribution can potentially save power and
improve performance

Rather than grab a memory resource over NUMA...

...Move the task to the memory

—MS
the Future of Memory and Storage
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Task

I/O

Controller

Memory
Resource

Shortong
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Consider the teMmMperature of your data

)
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B BN RFETCRAET

Map data into the appropriate memory tier
by its temperature rating

CXL Memory-1

CXL Memory-2

Coldest data

°C
| __s0
=40
- 30
= 20
= 10
=0
=10

=20

= -30

CXL Hybrid
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Persistent memory is not just about data

integrity o . o
Applications are forced to checkpoint contents periodically

because of volatile DRAM

a

DDR SDRAM

et ——

User Space

Kernel Space

CXL Driver

R e

1
1
!
BAEBI !
1
1
1

R ] s s s s S s e, *

Device
Mixed

I
I
i
media ctl i !
I
I
I
I

Energy Source

Checkpointing consumes ~8% of system
,~" throughput and power on average

Nt e s s o r = s s s s = s o= m s = omm =
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Persistent memory can save power
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NVMe Over CXL: Only grab the FLITs you need

PCle/CXL.io
NVMe-oC SSD

CXL.mem

64 bytes

NVMe is just a cache protocol between NAND and DRAM

NVMe-oC places the controller memory buffer (CMB) in CXL space (HDM)
Processor grabs only the FLITs needed using CXL.mem

The rest of the CMB data (on average, 97%) remains where it is

This cache management scheme is expanded to create Virtual HDM

= MmeSs

©2025 Conferen oncepts,
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Computational storage —
Another way to move the processing to the data

Processor-Driven Architecture Data-Driven Architecture

QD
w2 (=) © - (]
'_I[_I I_| I_‘ PCI=> . PO

CPU & Memory I/O bottlenecks . Balanced compute & storage I/0 N

Limited Accelerators, specific sockets required
Massive data movement 1 Minimize data movement

No compute parallelism Maximum compute parallellsm
l - -
IFE Fi Flash|

CSD: Computational Storage Drive

Multiple SoCs, easily plug-in via storage

CsD

Significant challenges: Potential savings:

* No vendor interoperability * Power reduction

* May not accelerate versus CPU consistently * Ease of checkpointing
* Programming complexity * Reduce CPU workload

J—
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Summary

We rock at moving data around!

We are TERRIBLE at using that data!

We are burning down the world!

We can do better!

)
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[ hank you far your Uime

A@y ya&&b‘/mf?

Bill Gervasi, Principal Memory Solutions Architect
Monolithic Power Systems
bill.gervasi@monolithicpower.com
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