High IOPS SSDs for Al Use Cases

Rory Bolt

KIOXIA America, Inc.

SSDT-201-1

August 6th, 2025

Emerging Al Use-Case: GPU Memory Extension

- Addresses HBM expansion limitations and high costs
- Allows 10x 100x larger datasets¹
- GPU-initiated I/O
 - up to 200M IOPS/GPU

Emerging Al Use-Case: Near-GPU Caching

- Addresses inefficiency of small data accesses over very high-speed networks
- Large, efficient transfers from data lake to load cache
- Small reads serviced from local SSD
- CPU-initiated I/O

Emerging Al Use-Case: Key Value Caching

- Prevents recomputation of previously generated tokens
- Extends local memorybased caches
 - Error recovery & routing benefits
- CPU initiated I/O

The Case for High IOPS

Alternate Paths to 200M IOPS

- Consumes lots of physical space
- Wasted capacity
- 32 TLC SSDs (800W for each GPU)

- 2~4 SSDs
 (100M or 50M IOPS) per GPU
- No PCle switch needed
- ~120W

KIOXIA's Path to 100 Million I/Os Per Second

Enabled by XL-FLASH

2027

100M

512B Random Read IOPS XL-FLASH Gen. 3 PCle[®] 7.0 50GB/sec

2026

10M

512B¹ Random Read IOPS XL-FLASH Gen. 2 PCle[®] 6.0 23GB/sec

2025

3M

4K Random Read IOPS

TLC Flash

PCle® 5.0

14GB²/sec

Low Latency Media is Key: Do The Math

- 100 Million IOPS requires a read to complete every 10 nsec¹
- Typical TLC tRead ~ 60 usec²
- 60 usec / 10 nsec = 6,000 pipelined reads
- XL-FLASH tRead ~ 5 usec
- 5 usec / 10 nsec = 500 pipelined reads

GPUs Use SSDs Differently

- Massive parallelism is the key to GPU performance
- Typical x86 system can issue ~50M IOPS consuming 100%
 CPU
- An NVIDIA Hopper™ GPU can generate ~200M IOPS with a projected <10% utilization
- It is not unusual for GPUs to drive device queue depths into the 10s of thousands!

Liquid Cooling Is In Your Future

- Faster flash media can be more power efficient!
- IOPS/Watt TLC: 480K vs XL-FLASH: 1.6M
- XL-FLASH @ 50M IOPS: ~ 35 Watts
- XL-FLASH @ 100M IOPS: ~ 60 Watts
- E3 may be required for surface area!

Performance / Power Preliminary Comparison with TLC SSDs

1st Gen 10M IOPS SSD

512B Random Read [MIOPS]

4KB Random Read [MIOPS]

PCle® Gen.

Power [W]

Best in Class TLC	Best in Class TLC	High IOPS Gen1 XL-FLASH
Gen5 x4	Gen6 x4	Gen6 x4
N/A	N/A	10.0
3.0	6.0	4.2
25	25	25
0.5	1.0	1.7

2nd Gen 50M/100M IOPS SSD

IOPS/Power Ratio

en 50M/100M IOPS SSD	Best in Class TLC	High IOPS Gen2	High IOPS Gen2
		XL-FLASH	XL-FLASH
PCle Gen.	Gen7 x4	Gen7 x4	Gen7 x4
512B Random Read [MIOPS]	N/A	50	100
4KB Random Read [MIOPS]	12	TBD	TBD
Power [W]	25	<=35	<=60
IOPS/Power Ratio	1.0	>=3.0	>=3.5

KIOXIA