Understanding Computational Capabilities of COTS DRAM Chips

İsmail Emir Yüksel

OMEM-201-1: Emerging Memory Architectural Advancements 06/08/2025

The Capability of COTS DRAM Chips

We demonstrate that COTS DRAM chips:

1

Can copy one row into up to 31 other rows with >99.98% success rate

2

Can perform **NOT operation** with up to **32 output operands**

3

Can perform up to 16-input AND, NAND, OR, and NOR operations

In-DRAM Multiple Row Copy (Multi-RowCopy)

Simultaneously activate many rows to copy one row's content to multiple destination rows

RowClone

Multi-RowCopy

Key Idea: NOT Operation

Connect rows in neighboring subarrays through a NOT gate by consecutively activating rows

Key Idea: NAND, NOR, AND, OR

Manipulate the bitline voltage to express a wide variety of functions using simultaneous multi-row activation in neighboring subarrays

Many-Input AND, NAND, OR, and NOR Operations

Functionally-Complete Boolean Logic in Real DRAM Chips: Experimental Characterization and Analysis

İsmail Emir Yüksel Yahya Can Tuğrul Ataberk Olgun F. Nisa Bostancı A. Giray Yağlıkçı Geraldo F. Oliveira Haocong Luo Juan Gómez-Luna Mohammad Sadrosadati Onur Mutlu

ETH Zürich

AVG(X,Y)

https://arxiv.org/pdf/2402.18736.pdf

DRAM Testing Infrastructure

- Developed from DRAM Bender [Olgun+, TCAD'23]*
- Fine-grained control over DRAM commands, timings, and temperature

DRAM Chips Tested

- 256 DDR4 chips from two major DRAM manufacturers
- Covers different die revisions and chip densities

Chip Mfr.	#Modules (#Chips)	Die Rev.	Mfr. Date ^a	Chip Density	Chip Org.	Speed Rate
SK Hynix	9 (72)	M	N/A	4Gb	x8	2666MT/s
	5 (40)	A	N/A	4Gb	x8	2133MT/s
	1 (16)	A	N/A	8Gb	x8	2666MT/s
	1 (32)	A	18-14	4Gb	x4	2400MT/s
	1 (32)	A	16-49	8Gb	x4	2400MT/s
	1 (32)	M	16-22	8Gb	x4	2666MT/s
Samsung	1 (8)	F	21-02	4Gb	x8	2666MT/s
	2 (16)	D	21-10	8Gb	x8	2133MT/s
	1 (8)	A	22-12	8Gb	x8	3200MT/s

Robustness of Multi-RowCopy

COTS DRAM chips can copy one row's content to up to 31 rows with a very high success rate

Performing AND, NAND, OR, and NOR

COTS DRAM chips can perform {2, 4, 8, 16}-input AND, NAND, OR, and NOR operations

Performing AND, NAND, OR, and NOR

COTS DRAM chips can perform 16-input AND, NAND, OR, and NOR operations with very high success rate (>94%)

More on Functionally-Complete DRAM

 Ismail Emir Yuksel, Yahya Can Tugrul, Ataberk Olgun, F. Nisa Bostanci, A. Giray Yaglikci, Geraldo F. Oliveira, Haocong Luo, Juan Gomez-Luna, Mohammad Sadrosadati, and Onur Mutlu,

<u>"Functionally-Complete Boolean Logic in Real DRAM Chips: Experimental Characterization and Analysis"</u>

Proceedings of the <u>30th International Symposium on High-Performance Computer</u> <u>Architecture</u> (HPCA), April 2024.

[Slides (pptx) (pdf)]

arXiv version

[FCDRAM Source Code]

Functionally-Complete Boolean Logic in Real DRAM Chips: Experimental Characterization and Analysis

İsmail Emir Yüksel Yahya Can Tuğrul Ataberk Olgun F. Nisa Bostancı A. Giray Yağlıkçı Geraldo F. Oliveira Haocong Luo Juan Gómez-Luna Mohammad Sadrosadati Onur Mutlu

ETH Zürich

More on Multi-Row Copy

 Ismail Emir Yuksel, Yahya Can Tugrul, F. Nisa Bostanci, Geraldo F. Oliveira, A. Giray Yaglikci, Ataberk Olgun, Melina Soysal, Haocong Luo, Juan Gomez-Luna, Mohammad Sadrosadati, and Onur Mutlu,

"Simultaneous Many-Row Activation in Off-the-Shelf DRAM Chips: Experimental Characterization and Analysis"

Proceedings of the <u>54th Annual IEEE/IFIP International Conference on Dependable</u> <u>Systems and Networks</u> (**DSN**), Brisbane, Australia, June 2024.

[Slides (pptx) (pdf)]

arXiv version

[SiMRA-DRAM Source Code (Officially Artifact Evaluated with All Badges)]

Officially artifact evaluated as both code and dataset available, reviewed and reproducible.

Simultaneous Many-Row Activation in Off-the-Shelf DRAM Chips: Experimental Characterization and Analysis

İsmail Emir Yüksel¹ Yahya Can Tuğrul^{1,2} F. Nisa Bostancı¹ Geraldo F. Oliveira¹
A. Giray Yağlıkçı¹ Ataberk Olgun¹ Melina Soysal¹ Haocong Luo¹
Juan Gómez-Luna¹ Mohammad Sadrosadati¹ Onur Mutlu¹

1ETH Zürich ²TOBB University of Economics and Technology

Acknowledgments

Think BIG, Aim HIGH!

https://safari.ethz.ch

Understanding Computational Capabilities of COTS DRAM Chips

İsmail Emir Yüksel

OMEM-201-1: Emerging Memory Architectural Advancements 06/08/2025

