

Building an efficient eco-system using ZNS SSD

Viacheslav Dubeyko PhD, Linux kernel developer IBM

What is ZNS SSD?

ZNS SSD advantages:

- Sequential write pattern reduces the need for internal data shuffling and garbage collection.
- ZNS SSDs can achieve higher throughput, lower latency, and better quality of service (QoS).
- ZNS SSDs reduces the need for extensive over-provisioning.
- ZNS SSDs utilize a standard interface defined by NVMe, which allows for a unified approach to storage across both SSDs and HDDs with Shingled Magnetic Recording (SMR).

ZNS SSD limitations:

- Huge zone size.
- Append-only mode of write operations.
- Limited number of open/active zones.

SSDFS architecture (logical vs. physical view)

How to manage ZNS SSD limitations?

Diff Updates

Journal Area

Main Area

How to manage the huge zone size?

Compaction scheme

Big logical block size (32K, 64K)

Inflation model

How to manage limited number of open zones?

Migration scheme → **metadata**

Moving scheme → **user data**

How to manage the append-only mode without introducing GC on file system side?

Copy-On-Write policy

Migration scheme

How data temperature can be employed for efficient data classification?

Can file system prolong SSD lifetime?

Prolong SSD lifetime

Decrease number of write/read I/O requests

Eliminate GC activity

Store more data on the same device (increase compression ratio)

Decrease carbon footprint Support "green" economy Save the planet

SSDFS can prolong SSD lifetime

2x - 10x for real-life use-cases

SSDFS is capable to generate **smaller amount** (1.5x - 20x) **of write I/O** requests comparing with other file systems.

Can file system improve performance?

Segment type + Compaction scheme + Migration stimulation

SSDFS is capable to demonstrate a **better performance** for data with good compression ratio:

create

ext4: 1.2x - 1.8x

• xfs: 1.2x - 1.8x

• btrfs: 1.3x - 1.8x

• nilfs2: 1.1x - 1.9x

• f2fs: 1.2x - 1.8x

• bcachefs: 0.9x - 1.7x

update

ext4: 1.5x - 1.8x

• xfs: 1.5x - 1.8x

btrfs: 1.4x - 1.7x

• nilfs2: 1.5x - 1.8x

• f2fs: 1.5x - 1.8x

bcachefs: 1.5x - 1.7x

reac

ext4: 1.1x - 3.7x

• xfs: 1.1x - 3.7x

btrfs: 1x - 3.4x

● nilfs2: 1.2x - 4x

• f2fs: 1.2x - 3.9x

bcachefs: 0.8x - 3x

delete

ext4: 1.2x - 2.2x

• xfs: 1.4x - 2.2x

btrfs: 1.5x - 2.2x

• nilfs2: 1.5x - 2.8x

• f2fs: 1.7x - 2.6x

bcachefs: 1.5x - 2.2x

