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A Typical DRAM-Based Computing System
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Read Disturbance in DRAM (I)

•Read disturbance in DRAM breaks memory isolation

•Prominent example: RowHammer
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DRAM Subarray
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Repeatedly opening (activating) and closing a DRAM row 
many times causes RowHammer bitflips in adjacent rows

[Kim+, ISCA’14] 4



Read Disturbance in DRAM (II)

•Read disturbance in DRAM breaks memory isolation

•A new read disturbance phenomenon: RowPress
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[Luo+, ISCA’23]

Keeping a DRAM row open for a long time 
causes bitflips in adjacent rows

DRAM Subarray
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Read Disturbance Solutions

There are many solutions to mitigate read disturbance bitflips

• More robust DRAM chips and/or error-correcting codes

• Increased refresh rate 

• Physical isolation

• Row remapping

• Preventive refresh

• Proactive throttling

Each solution offers a different system design point 
in reliability, performance, energy, and area tradeoff space
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The Read Disturbance Threshold (RDT)

•Many secure read disturbance solutions
take a preventive action before a bitflip manifests
• E.g., preventively refresh a victim row

•Must accurately quantify the amount of disturbance
that a row can withstand before experiencing a bitflip
• Typically identified by testing for read disturbance failures

•Read Disturbance Threshold (RDT):
The number of aggressor row activations 
needed to induce the first bitflip
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Accurate Identification of Read Disturbance Threshold
is Critical for System Security and Performance
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Configured RDT 
for the Mitigation Technique
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Variable Read Disturbance (VRD) Summary
Research Question
• How accurately and efficiently can we measure 

the read disturbance threshold (RDT) of each DRAM row?

Experimental Characterization
• Record >100M RDT measurements across 3750 rows and 

many test parameters (e.g., temperature, data pattern) in 
160 DDR4 and 4 HBM2 chips

Key Observations
• RDT changes significantly and unpredictably over time: VRD
• Maximum observed RDT is 3.5X higher than minimum (for a row)
• Smallest RDT (for a row) may appear after 94,467 measurements

Implications for System Security and Robustness
• RDT cannot be accurately identified quickly
• Given our limited dataset, guardbands (>10%) and ECC (SECDED or Chipkill)

may prevent VRD-induced bitflips at significant performance cost
• More data and analyses needed to make definitive conclusion

• Call for future work on understanding and efficiently mitigating VRD
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Motivation
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DRAM chips are increasingly more vulnerable 
to read disturbance with technology scaling

Technology Scaling
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Motivation

DRAM read disturbance worsens 
as DRAM chip density increases

Existing solutions become more aggressive

Aggressive preventive actions make 
existing solutions prohibitively expensive
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Configured RDT 
for the Mitigation Technique
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Motivation
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Prior works assume that the ground truth 
Read Disturbance Threshold (RDT) can be identified



Problem
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No prior work rigorously studies 

temporal variation of 

DRAM read disturbance threshold

&

implications for future solutions



Our Goal

Answer two research questions:

Analyze implications for 
read disturbance solutions

1 Does RDT change over time?

2
How reliably and efficiently 

can RDT be measured?
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DDR4 DRAM Testing Infrastructure

DRAM Bender on a Xilinx Virtex UltraScale+ XCU200

Xilinx Alveo U200 FPGA Board
(programmed with DRAM Bender*)

DRAM Module with Heaters

MaxWell FT200 
Temperature Controller

PCIe 
Host Interface

*Olgun et al., "DRAM Bender: An Extensible and Versatile FPGA-Based Infrastructure to Easily Test 
State-of-the-Art DRAM Chips,” TCAD, 2023. [GitHub: https://github.com/CMU-SAFARI/DRAM-Bender]

Fine-grained control over DRAM commands, 
timing parameters (±1.5ns), and temperature (±0.5°C )
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HBM2 DRAM Testing Infrastructure

*Olgun et al., "DRAM Bender: An Extensible and Versatile FPGA-Based Infrastructure to Easily Test 
State-of-the-Art DRAM Chips,” TCAD, 2023. [GitHub: https://github.com/CMU-SAFARI/DRAM-Bender]

Fine-grained control over DRAM commands, 
timing parameters (±1.67ns), and temperature (±0.5°C )

DRAM Bender on a Bittware XUPVVH
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Tested DRAM Chips

160 DDR4 and 4 HBM2 Chips from SK Hynix, Micron, Samsung
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Testing Methodology

To characterize our DRAM chips at worst-case conditions:

1. Prevent sources of interference during core test loop 
• No DRAM refresh: to avoid refreshing victim row
• No read disturbance mitigation mechanisms: to observe circuit-level effects
• No error correcting codes (ECC): to observe all bitflips 
• Test for less than a refresh window (32ms) to avoid retention failures

2. Worst-case read disturbance access sequence
- We use worst-case read disturbance access sequence 

based on prior works’ observations
- Double-sided read disturbance: repeatedly access 

the two physically-adjacent rows

Record bitflips 
in victim Victim Row

Aggressor Row 1

Aggressor Row 2

1 hammer

Open-close

Open-close
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Foundational Results: Key Takeaway
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The Read Disturbance Threshold (RDT) of a row
changes randomly and unpredictably over time

Accurately identifying RDT is challenging

Key Takeaway
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Read Disturbance Threshold Changes Over Time
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The RDT of a Row Has Multiple States
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Variable Read Disturbance Across DRAM Chips
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Variable Read Disturbance Across DRAM Chips
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across all tested DRAM chips
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VRD is (Likely) Unpredictable

•The outcome of the next 
read disturbance threshold (RDT) measurement 
cannot be predicted given past measurements

34

1
RDT histograms well resemble* 
random probability distributions
e.g., normal distribution

* Resemblance quantified using statistical tests in the paper 

2
Analyze and find no repeating patterns
in the series of consecutively measured RDT values
using the autocorrelation function



VRD is (Likely) Unpredictable

•The outcome of the next RDT measurement
cannot be predicted given past measurements
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1
RDT histograms well resemble* 
random probability distributions
e.g., normal distribution

2
Analyze and find no repeating patterns 
using the autocorrelation function

https://arxiv.org/pdf/2502.13075

https://arxiv.org/pdf/2502.13075


Talk Outline

I. Motivation

II. Experimental Characterization Methodology

III. Foundational Results

IV. In-Depth Analysis of VRD

V. Implications for System Security and Robustness

VI. Conclusion

36



In-Depth Analysis: Parameter Space

•Four data patterns

•Three temperature levels: 50°C, 65°C, 80°C

•Three aggressor row on time values (RowPress):
• Minimum tRAS = ~35ns
• Interval between two periodic refresh commands tREFI = 7.8µs (DDR4)
• Maximum interval between two refresh 9 ⨉ tREFI = 70.2µs (DDR4)

•Test 3750 rows and measure RDT 1000 times per row
• Aside: what would happen if we measure >1M times?
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In-Depth Analysis: Key Takeaways
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All tested DRAM rows exhibit VRD

Takeaway 1

Relatively few (<500) RDT measurements are
unlikely to yield the minimum RDT of a row

Takeaway 2

Data patterns, temperature, and
aggressor row on time affect VRD

Takeaway 3
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VRD Across DRAM Rows
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DRAM Rows Sorted by Increasing Coefficient of Variation of RDT
Across 1000 RDT Measurements
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VRD Across DRAM Rows
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DRAM Rows Sorted by Increasing Coefficient of Variation of RDT
Across 1000 RDT Measurements
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VRD in Two Example Rows
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1.2⨉
3.5⨉

Variation in read disturbance threshold
 can reach 3.5⨉



In-Depth Analysis: Key Takeaways
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All tested DRAM rows exhibit VRD

Takeaway 1

Relatively few (<500) RDT measurements are
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Probability of Identifying the Minimum RDT

•How likely is it that N < 1000 measurements
yield the minimum RDT value across 1000 measurements?

•N = 1, 3, 5, 10, 50, and 500

•Monte Carlo simulations for 10K iterations
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Probability of Identifying the Minimum RDT
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Very unlikely to find the minimum RDT
of a DRAM row with N = 1 measurement

only 0.2% for the median row



Probability of Identifying the Minimum RDT
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Probability of finding the minimum 
read disturbance threshold increases with N

(i.e., with more and more testing)

0.2% 0.7% 1.1% 2.1% 10.0% 75.3%
Probability values for the median row



Expected Value of the Minimum RDT

• With only N < 1000 RDT measurements
how far are we from the minimum RDT across 1000 measurements
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Expected Value of the Minimum RDT

• With only N < 1000 RDT measurements
how far are we from the minimum RDT across 1000 measurements
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Expected Value of the Minimum RDT
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Expected Value of the Minimum RDT
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Expected Value of the Minimum RDT
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Expected Value of the Minimum RDT
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The minimum RDT is significantly smaller 
than the one expected to be found with N = 1 measurement

RDT expected to be found by 1 measurement is
1.9⨉ greater than minimum RDT across 1000 measurements



Expected Value of the Minimum RDT
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In-Depth Analysis: Key Takeaways
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All tested DRAM rows exhibit VRD

Takeaway 1

Relatively few (<500) RDT measurements are
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Implications Summary

•Security guarantees provided by mitigation techniques 
rely on accurately identified 
minimum read disturbance threshold (RDT)

•Accurate identification of minimum RDT (for each row)
is extremely challenging (even with 1000s measurements) 
because RDT unpredictably changes over time

•We analyze the use of a guardband and ECC
• May prevent VRD-induced bitflips
• Large guardbands induce performance overhead

•Call for future work on online RDT profiling and 
runtime configurable read disturbance mitigations
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Important Caveat

•VRD solution analysis based on 1K or 10K
read disturbance threshold measurements per row

•More measurements could yield worse results
• Read disturbance threshold distribution tail could expand

•What results would millions or billions
of RDT measurements yield?
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Challenges of Accurately Identifying RDT
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Variation in read disturbance threshold across 1000 measurements 
can reach 3.5⨉ and may not be bounded

3.5⨉R
D

T

Measurement Number

VRD is affected by data pattern, temperature,
aggressor row on time

Comprehensive RDT profiling is time-intensive

Measuring RDT of each row only once with 8000 hammers
using four data patterns, at three temperature levels

takes 39 minutes in a bank of 256K rows



RDT Profiling is Time-Intensive
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Comprehensive RDT testing can take tens of hours 
(only 1000 measurements, one data pattern, 

one temperature level, one aggressor row on time)



RDT Profiling is Time-Intensive
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Comprehensive RDT testing can take hours 
(1000 measurements, one data pattern, 

one temperature level, one aggressor row on time)
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Making Do With Few RDT Measurements

• A system designer might measure RDT a few times
and apply a safety margin (guardband) to the minimum observed value
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Making Do With Few RDT Measurements

• A system designer might measure RDT a few times
and apply a safety margin (guardband) to the minimum observed value
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Average across all tested rows

Minimum across all tested rows



Making Do With Few RDT Measurements
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A large guardband does not guarantee that 
the minimum RDT is always identified

Using guardbands alone is likely not effective



RDT Guardband Increases Performance Overheads
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50% RDT safety margin can induce 
45% additional overhead (over no margin)

Relying solely on guardbands not recommended

45%

35%



Combining ECC and Guardbands (I)

•Single-error correcting double-error detecting (SECDED)
or Chipkill ECC combined with guardbands 
could mitigate VRD-induced bitflips
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Unique bitflips when 10% RDT guardband applied

10% guardband combined w/ ECC is likely unsafe



Combining ECC and Guardbands (II)

66

RDT guardbands ≥20% yield 1 unique bitflip in a row

Given our limited measurement dataset (10K measurements)
RDT guardbands ≥20% combined with ECC

may prevent VRD-induced read disturbance bitflips 

More detailed analysis (following a large-scale study)
needed to make a definitive conclusion



More in the Paper

•Hypothetical explanation for VRD

• Effect of True- and Anti-Cell Layout
• Presence of true- and anti-cells in the victim row

does not significantly affect the RDT distribution

•Read disturbance mitigation evaluation methodology

•Probability of errors at the worst observed bitflip rate
for 10% RDT guardband
• SEC, SECDED, and Chipkill-like (SSC)

•Read disturbance testing time and energy consumption

•Detailed information on tested modules and chips

67
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Minimum RDT (of a row) may appear after many measurements

VRD Conclusion
Variable Read Disturbance (VRD)

The read disturbance threshold changes unpredictably over time

70

RDT for a DRAM row can vary by 3.5X

Given our limited read disturbance bitflip dataset,
guardbands combined with error-correcting codes

may be a solution for VRD-induced bitflips.

More data and analyses needed to make definitive conclusion

Future work could alleviate the shortcomings of existing mitigations
& develop better understanding of inner workings of VRD 

Identifying the minimum RDT is challenging and time-intensive



Extended Version on arXiv
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Is this Experiment Noise?

•Short answer: no

•Hypothetical explanation for VRD:
Randomly changing charge trap state in the active region 

• Long answer: 
We cannot identify any independent variables 
within our control that allow reliably predicting 
the minimum RDT despite extensive testing

•Device-level studies should confirm our hypotheses



Hypothetical Explanation for VRD

•No device-level study shows temporal variations
in read disturbance vulnerability 

•Electron migration and injection into victim cell
is a major read disturbance failure mechanism

•This mechanism is assisted by charge traps
in the shared active region of the victim and aggr. cell

•Temporal variation attributed to randomly changing
occupied/unoccupied states of charge traps
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RDT Distribution Across Chips

76



# of Consecutive Measurements That
Yield the Same RDT Value
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Autocorrelation Function Tests
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Expected Value of the Minimum RDT
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Expected Value of the Minimum RDT
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Min. RDT found by 1 measurement
3.21⨉ greater than 

min. RDT found by 1000 measurements



Expected Value of the Minimum RDT
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Effect of Die Density and Die Revision (I)
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RDT distribution worsens with increasing die density
and with advanced DRAM technology



Effect of Die Density and Die Revision (II)
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The effect of die density and die revision
is consistent across all tested modules



Effect of Data Pattern (I)
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Effect of Data Pattern (I)
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Effect of Data Pattern (II)
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No single data pattern causes 
the worst RDT distribution across all tested DRAM chips



Effect of Aggressor Row On Time
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Effect of Temperature
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Effect of True- and Anti-Cell Layout
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The presence of true- and anti-cells in the victim row 
does not significantly affect the RDT distribution



Error Probability Analysis
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DRAM Operation: Activate and Precharge
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Row 1

Row 2

Row 3

Row Buffer

Row 1

Access data in Row 1

Row 1 is closed

DRAM Subarray



DRAM Operation: Activate and Precharge
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Row 1

Row 2

Row 3

Row Buffer

Activate 
command

Row 1

Access data in Row 1

Row 1 is openRow 1 is closed

DRAM Subarray



DRAM Operation: Activate and Precharge
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Row 3

Row Buffer

Row 1

Precharge 
command

Access data in Row 3

Row 3 is closed

DRAM Subarray



DRAM Operation: Activate and Precharge
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Row 1

Row 2

Row 3

Row Buffer

Activate 
command

Access data in Row 3

Row 3

Row 3 is openRow 3 is closed

DRAM Subarray



DRAM Cell Leakage

Each cell encodes information in leaky capacitors

wordline

ca
p

acito
r

access
transistor

b
itlin

e

Stored data is corrupted if too much charge leaks 
(i.e., the capacitor voltage degrades too much)

charge
leakage
paths

[Patel+, ISCA’17] 95



DRAM Refresh

Periodic refresh operations preserve stored data
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Read Disturbance Bitflips
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Self-Managing DRAM (SMD)
A Low-Cost Framework for 

Enabling Autonomous and Efficient
DRAM Maintenance Operations

Hasan Hassan, Ataberk Olgun, 

A. Giray Yaglikci, Haocong Luo, Onur Mutlu

https://github.com/CMU-SAFARI/SelfManagingDRAM

https://arxiv.org/pdf/2207.13358
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Self-Managing DRAM (SMD) Summary
Problem: Implementing new in-DRAM maintenance operations
requires modifications in the DRAM interface and other system components

• Modifying the DRAM interface requires a multi-year effort by JEDEC

Goal: Ease and accelerate the process of implementing new in-DRAM
maintenance operations and enable more efficient maintenance operations

Key Idea: With a single, simple DRAM interface modification:

• The DRAM chip can reject memory accesses that target 
an under-maintenance DRAM region (e.g., a subarray)

• Implement and modify maintenance operations without future changes

Use Cases: Demonstrate the usefulness and versatility of SMD

• In-DRAM refresh, RowHammer protection, and memory scrubbing

Evaluation: Demonstrate that SMD performs maintenance operations 
with high performance and high energy efficiency
at relatively small DRAM chip and memory controller area costs

https://github.com/CMU-SAFARI/SelfManagingDRAM 99
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DRAM Interface Status Quo
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Memory 
Controller

(MC)

DRAM
Chip

DRAM command

data

DDRx interface



DRAM Interface is Rigid
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orchestrates 
all DRAM operations

executes 
all DRAM commands

Memory 
Controller

(MC)

DRAM
Chip

DRAM command

data

Cmd.

DRAM interface is completely controlled by one side

- by issuing DRAM commands



DRAM Maintenance Mechanisms

104

•DRAM failure modes necessitate maintenance mechanisms

•Perform operations to maintain DRAM data integrity
• A prominent example is periodic refresh

Memory 
Controller

(MC)

DRAM
Chip

DRAM command

data

Data 
Retention

Variable 
Retention Time

Read Disturbance
(e.g., RowHammer)

REF



New Maintenance Mechanisms are Needed

105

•Density scaling increases memory error rates

Continued DRAM process scaling necessitates
new efficient maintenance mechanisms

Data 
Retention

shrinking capacitance

worsening leakage

Variable 
Retention Time

shrinking capacitance
worsening leakage

[Patel+, MICRO’21]

Read Disturbance
(e.g., RowHammer)

increasing interference



DRAM Standard Interface Specification

106

DDRx
Interface

Specification

Maintenance
Mechanisms

DRAM Standard



DRAM Standard Body – JEDEC* 
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390+ companies

system manufacturers foundries

DRAM manufacturers parts manufacturers . . .

*Joint Electron Device Engineering Council

*
Define

Obey

DDRx
Interface

Specification

DRAM Standard

Maintenance
Mechanisms



Barrier to New Maintenance Mechanisms

• Adding new or modifying existing maintenance mechanisms
requires lengthy modifications to 

1.  DRAM specifications and

2.  other system components that obey the specifications

108

DDRx
Interface

Specification

DRAM Standard

Maintenance
Mechanisms

DRAM interface is rigid



DRAM Specifications Evolve Slowly
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DDR3
Specification

DDR5
Specification

DDR4
Specification

5 years 8 years

Multi-year effort by the JEDEC committee 

Introducing new maintenance operations
takes a long time



Recently-Introduced Maintenance Mechanisms

•DDR5 introduces three maintenance techniques

110

1 Same Bank Refresh
• improve bank-level parallelism

2 Refresh Management (RFM)
• improve robustness

3 In-DRAM ECC scrubbing
• improve error tolerance

These improvements could have been released earlier

DDR5DDR4

8 years



Problem and Our Goal

111

Introducing new maintenance operations
takes a long time

Problem

Ease and accelerate the process of implementing
new efficient in-DRAM maintenance operations

Our Goal



DRAM Access and Maintenance

•Categorize DRAM operations into two classes:

112

1 Access

2 Maintenance

• Performed to serve memory requests
• Uses information available only to the memory controller

• e.g., load address, store data

• Performed to maintain DRAM data integrity
• Uses information available only to the DRAM chip

• e.g., in-DRAM row activation counter



DRAM Access and Maintenance

•Categorize DRAM operations into two classes:

113

1 Access

2 Maintenance

• Performed to serve memory requests
• Uses information available only to the memory controller

• E.g., load address, store data

• Performed to maintain DRAM data integrity
• Uses information available only to the DRAM chip

• e.g., in-DRAM row activation counter

Key observation: 
A DRAM chip could “maintain” itself



A DRAM Chip Should Maintain Itself

•Two benefits of DRAM chip “autonomously”
performing maintenance operations

114

1
Maintenance mechanisms can be implemented 
more easily and rapidly

2
Enable DRAM manufacturers with breathing room
to perform architectural optimizations
without exposing DRAM-internal proprietary information

• DRAM interface modifications are not required 



Solution Approach

• Key Challenge: DRAM interface is too rigid to accommodate
autonomous in-DRAM maintenance operations

• Goal: Make a simple, one-time change to the DRAM interface
that enables autonomous maintenance operations

115

Enable autonomous maintenance operations

Processor-Centric
Control

DRAM-Centric
Control

DRAM Interface Design “Scale”
Processor

DRAM 
Chip

(we are here)

give breathing room to DRAM
to perform its operations 

autonomously
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SMD Key Idea: Autonomous Maintenance
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Memory 
Controller

(MC)

DRAM
Chip

DRAM command

data

do
maintenance

DRAM chip controls in-DRAM maintenance operations

Enable implementing new maintenance mechanisms 
without modifying the standard and

exposing DRAM-internal proprietary information



Access-Maintenance Conflicts

•Problem: Access-maintenance conflict

118

Memory 
Controller

(MC)

DRAM
Chip

DRAM command

data

Cmd.

access-
maintenance 

conflict

do
maintenance



SMD Key Mechanism

•Problem: Access-maintenance conflict

•Key mechanism: Reject access (activate) commands

119

Memory 
Controller

(MC)

DRAM
Chip

DRAM command

data

Cmd.

negative acknowledgment (nack)

access-
maintenance 

conflict



SMD Key Contribution
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orchestrates 
all access operations

can now perform its own
maintenance autonomously

Memory 
Controller

(MC)

DRAM
Chip

DRAM command

data

negative acknowledgment (nack)

Partition the work nicely between the 
memory controller and the DRAM chip

DRAM chip controls in-DRAM maintenance operations

with a single, simple interface change



Deeper Look at SMD
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1 SMD Bank Organization



DRAM Chip

DRAM Chip Organization
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DRAM 
Bank

DRAM 
Bank

Chip I/O

DRAM Bank

DRAM Subarray
…

…

…

…… …

Row
Row

Subarray

…… …

512-1024 rows in a subarray

64-256 subarrays in a bank



DRAM Bank with SMD
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SMD Bank

DRAM Subarray Lock 
Region

Lock 
Controller

Lock Region 
Bitvector (LRB)

Row
Row

Subarray
Lock 

Region

granularity of 
a maintenance operation

(multiple subarrays)

indicate regions 
undergoing maintenance

(1 bit per lock region)

…… …

…… …



Locking Regions for Maintenance
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SMD Bank

DRAM Subarray Lock 
Region

Lock 
Controller

Lock Region 
Bitvector (LRB)

Row
Row

Subarray
Lock 

Region

granularity of 
a maintenance operation

(multiple subarrays)

indicate regions 
undergoing maintenance

(1 bit per lock region)

…… …

…… …

Lock a region before starting maintenance



Deeper Look at SMD

125

1 SMD Bank Organization

2 Region Locking Mechanism



Summary of Region Locking Mechanism

126

1 Maintenance operation “locks” a region 

2 Memory controller can access “not locked” regions

3 Access to locked region receives negative ack

4 Locked region released at the end of maintenance



Summary of Region Locking Mechanism
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1 Maintenance operation “locks” a region 

2 Memory controller can access “not locked” regions

3 Access to locked region receives negative ack

4 Locked region released at the end of maintenance



Locking a Region
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Lock Region 0 

Lock Region 1 

Lock Region N-1 

. . .

Lock 
Controller

0 0 0. . .

Lock Region Bitvector

logic-0 == “not locked”
logic-1  == “locked”



Locking a Region
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Lock Region 0 

Lock Region 1 

Lock Region N-1 

. . .

Lock 
Controller

Maint. Op. on 
Lock Region 0

Lock Region 0

0 0 0. . .

Lock Region Bitvector



Locking a Region
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Lock Region 0 

Lock Region 1 

Lock Region N-1 

. . .

Lock 
Controller

Maint. Op. on 
Lock Region 0

Lock Region 0

1 0 0. . .

Lock Region Bitvector

set to “locked’’
(logic-1)

maintenance operation 
can proceed



Accessing a Not Locked Region
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Lock Region 0 

Lock Region 1 

Lock Region N-1 

. . .

Lock 
Controller

Maint. Op. on 
Lock Region 0

1 0 0. . .

Lock Region Bitvector

Lock 
Region 1

access can proceed

region 1 is not locked

Access
Lock Region 1



Accessing a Locked Region
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Lock Region 0 

Lock Region 1 

Lock Region N-1 

. . .

Lock 
Controller

Maint. Op. on 
Lock Region 0

1 0 0. . .

Lock Region Bitvector

Access
Lock Region 0 Lock 

Region 0

region 0 is locked

negative acknowledgment



Releasing a Region
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Lock Region 0 

Lock Region 1 

Lock Region N-1 

. . .

Lock 
Controller

Maint. Op. on 
Lock Region 0

Release
Lock Region 0

1 0 0. . .

Lock Region Bitvector



Releasing a Region
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Lock Region 0 

Lock Region 1 

Lock Region N-1 

. . .

Lock 
Controller

Maint. Op. on 
Lock Region 0

Release
Lock Region 0

0 0 0. . .

Lock Region Bitvector

set to “not locked’’
(logic-0)



Releasing a Region
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Lock Region 0 

Lock Region 1 

Lock Region N-1 

. . .

Lock 
Controller

0 0 0. . .

Lock Region Bitvector



Deeper Look at SMD
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1 SMD Bank Organization

2 Region Locking Mechanism

3 Controlling an SMD Chip



Summary of SMD Chip Control
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1 Activate commands can get rejected (negative ack)

2 Memory controller retries rejected commands

3
Memory controller can
attempt to access other lock regions

4
SMD chip and memory controller
ensure forward progress for memory requests



Summary of SMD Chip Control

138

1 Activate commands can get rejected (negative ack)

2 Memory controller retries rejected commands

3
Memory controller can
attempt to access other lock regions

4
SMD chip and memory controller
ensure forward progress for memory requests



DRAM Control – The “Activate” Command
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Row
Row

Subarray

Row
Row

Subarray

Row
Row

Subarray

…… …

DRAM Command Sequence

ACT*

ready a DRAM
row for access

Lock Region 0 

Lock Region 1 

Lock Region N-1 

time

. . .

*activate 

access this row
(read or write)



DRAM Control – Timing Parameters

•Timing parameter: Minimum delay between two commands

140

Lock Region 0 

Lock Region 1 

Lock Region N-1 

. . .

Row
Row

Subarray

Row
Row

Subarray

Row
Row

Subarray

…… …

DRAM Command Sequence

access this row
(read or write)

ACT RD WR time

a timing parameter another timing parameter



SMD Control – Handling a Rejection
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ACT NACKLock Region 0 

Memory 
Controller

(MC)

DRAM
Chip

DRAM command

data

Cmd.

do
maintenance

negative acknowledgment (nack)

access-
maintenance 

conflict



SMD Control – Handling a Rejection

•Retry ACT every retry interval until ACT is not rejected 

142

ACT NACKLock Region 0 ACT

Retry Interval (RI)

Memory 
Controller

(MC)

DRAM
Chip

DRAM command

data

Cmd.

do
maintenance

negative acknowledgment (nack)

access-
maintenance 

conflict

Key idea: Introduce a new timing parameter



Maintenance-Access Parallelization
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Lock Region 1 ACT

undergoing maintenance

Overlap RI latency with a useful operation to another lock region

building on basic design in SALP
[Kim+, ISCA’12] [Zhang+, HPCA’14] [Chang+, HPCA’14]

More details in our paper
https://arxiv.org/pdf/2207.13358

ACT NACKLock Region 0 ACT

Retry Interval (RI)

Key idea: Introduce a new timing parameter

https://arxiv.org/pdf/2207.13358


Proof of Forward Progress

•SMD breaks the chain of ACT commands and rejections

•because:

144

ACT NACK

Lock Region 0 locked for maintenance

i MC issues the rejected ACT at the end of every RI

ii SMD locks the same region after at least one RI

https://arxiv.org/pdf/2207.13358

https://arxiv.org/pdf/2207.13358
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SMD-Based Maintenance Mechanisms

Demonstrate the usefulness and versatility of SMD

146

1 Fixed-Rate Refresh (SMD-FR)

2 Deterministic RowHammer Protection (SMD-DRP)

3 Memory Scrubbing (SMD-MS)

Variable-Rate Refresh
Probabilistic RowHammer Protection

Online Error Profiling
Power Management

Processing in/near Memory
…

https://arxiv.org/pdf/2207.13358

Evaluate Discuss

https://arxiv.org/pdf/2207.13358
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SMD-Based Maintenance Mechanisms

Demonstrate the usefulness and versatility of SMD

148

1 Fixed-Rate Refresh (SMD-FR)

2 Deterministic RowHammer Protection (SMD-DRP)

3 Memory Scrubbing (SMD-MS)

Variable-Rate Refresh
Probabilistic RowHammer Protection

Online Error Profiling
Power Management

Processing in/near Memory
…

https://arxiv.org/pdf/2207.13358

Evaluate Discuss

https://arxiv.org/pdf/2207.13358


DRAM Periodic Refresh

149

DRAM encodes data 
in leaky capacitors

Necessitates periodic 
refresh operations

C
h

a
rg

e

Time

REF

[Patel+, DSN’19]
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DRAM
Chip

DRAM command

data

REF



Alleviating the Drawbacks of Periodic Refresh

150

i Refresh commands spend command bus energy

ii Entire chip or bank inaccessible during refresh

• e.g., 8192 REF commands in 64 milliseconds in DDR4

• e.g., for 350 nanoseconds in DDR4

Memory 
Controller

(MC)

DRAM
Chip

DRAM command

data

REF



Alleviating the Drawbacks of Periodic Refresh

151

i Refresh commands spend command bus energy

ii Entire chip or bank inaccessible during refresh

• e.g., 8192 REF commands in 64 milliseconds in DDR4

• e.g., for 350 nanoseconds in DDR4

i No refresh commands sent over the command bus

ii
Allow access to most of the chip 
that is not under maintenance



SMD-FR – Implementation
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Pending Refresh 
Counter (PRC)

Lock Region 
Counter (LRC)

Row Address 
Counter (RAC)

Lock the region 
corresponding to LRC

Locked?

PRC>0?

Refresh rows
[RAC, RAC+RG)

Release the
locked region

Increment
LRC and RACDecrement 

PRC

NO

YES

YES

increment every 
refresh period

Refresh Granularity (RG)
number of rows refreshed every time a region is locked



SMD-Based Maintenance Mechanisms

Demonstrate the usefulness and versatility of SMD
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i Fixed-Rate Refresh (SMD-FR)

ii Deterministic RowHammer Protection (SMD-DRP)

iii Memory Scrubbing (SMD-MS)

Variable-Rate Refresh
Probabilistic RowHammer Protection

Online Error Profiling
Power Management

Processing in/near Memory
…

https://arxiv.org/pdf/2207.13358

Evaluate Discuss

https://arxiv.org/pdf/2207.13358
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Hardware Implementation and Overhead (I)
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1 DRAM interface modifications

Two options:
1. Use existing alert_n signal at no additional pin cost OR
2. Add a new pin for each rank of DRAM chips 

(~1.6% processor pin count)

Memory 
Controller

(MC)

DRAM
Chip

negative 
acknowledgment 

(nack)

One interface change to end all interface changes
for new in-DRAM maintenance mechanisms



Hardware Implementation and Overhead (II)
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2 DRAM chip modifications

Lock Region 
Bitvector (LRB)

*modeled using CACTI 6.0

0.001%* 
of a 45.5 mm2 DRAM chip

i

ii
Maintenance-access parallelization

1.1%* 
of a 45.5 mm2 DRAM chip

iii
Maintenance mechanisms

(orthogonal to SMD)

https://arxiv.org/pdf/2207.13358

https://arxiv.org/pdf/2207.13358


Hardware Implementation and Overhead (III)
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3 Memory controller modifications

Detailed explanation:
https://arxiv.org/pdf/2207.13358

• 288 bytes of storage to keep track of locked regions

• Leverage existing memory request scheduling logic
for handling rejected ACT commands

https://arxiv.org/pdf/2207.13358


Evaluation Methodology
• Cycle-level simulations using Ramulator [Kim+, CAL’15]

• Baseline system configuration
• Processor:   4GHz, 4-wide issue, 8 MSHRs/core

• Last-Level Cache:  8-way associative, 4 MiB/core

• Memory Controller: 64-entry read/write request queue
     FR-FCFS-Cap with Cap = 7

• DRAM:    DDR4-3200, 32 ms refresh period
     4 channels, 2 ranks, 16 banks, 128K rows

• SMD parameters
• 16 lock regions in a DRAM bank

• 16 subarrays in one lock region

• Retry Interval (RI) = 62.5 nanoseconds

• 62 single-core and 60 four-core workloads
• SPEC CPU2006/2017, TPC, STREAM, MediaBench
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https://github.com/CMU-SAFARI/SelfManagingDRAM

https://github.com/CMU-SAFARI/SelfManagingDRAM
https://github.com/CMU-SAFARI/SelfManagingDRAM
https://github.com/CMU-SAFARI/SelfManagingDRAM


Evaluated System Configurations

• Baseline DDR4 system
• refresh window = 32 millisecond

• Fixed-Rate Refresh (SMD-FR)
• refresh window = 32 millisecond, refresh granularity = 8

• Deterministic RowHammer Protection (SMD-FR + SMD-DRP)
• refresh neighbor rows of a row that gets activated 512 times

• Memory Scrubbing (SMD-FR + SMD-MS)
• 5-minute scrubbing period

• SMD-Combined combines SMD-FR + SMD-DRP + SMD-MS

• No-Refresh DDR4 system that does not do maintenance

159



Single-Core Performance

0.9

0.95

1

1.05

1.1

160

A
ve

ra
g

e
 S

p
e

e
d

u
p

 
o

v
e

r 
B

a
se

lin
e

SMD provides 4.8% to 5.0% average speedup 

DDR4 Baseline
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SMD-Combined provides 
84.7% the speedup of No-Refresh



Four-Core Performance
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DRAM Energy
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DRAM Energy
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SMD-Combined provides 
59.6% of the energy savings of No-Refresh



Performance and Energy Summary

•Benefits over the baseline system attributed to:

165

SMD provides performance and energy benefits
comparable to a hypothetical system without maintenance

while improving system robustness

1
Overlapping the latency of maintenance operations
with useful access operations

2
Reduced command interference and energy use:
MC does not issue maintenance commands



More in the Paper

•Proof of forward progress for memory requests

•Discussion of more use cases
• Variable rate refresh, RowHammer defenses, online error profiling…
• Power management, processing-near-memory

•Design choices
• Evaluation of a policy that pauses maintenance operations
• Discussion of a predictable SMD interface

•Sensitivity analyses
• Performance improves with number of lock regions
• Benefits increase with reducing refresh period
• Provide similar benefits across 1-, 2-, 4-, 8-core workloads

•SMD-based scrubbing vs. MC-based scrubbing
• SMD induces ~8X less overhead at a very high scrubbing rate
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More in the Paper

•Design choices
• evaluation of a policy that pauses maintenance operations
• discussion of a predictable SMD interface

•Sensitivity analyses
• performance improves with number of lock regions

• benefits increase with reducing refresh period
• provide similar benefits across 1-, 2-, 4-, 8-core workloads

•SMD-based scrubbing vs. MC-based scrubbing
• SMD induces ~8X less overhead at a very high scrubbing rate
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SMD Outline

1. Motivation

2. Self-Managing DRAM (SMD)

3. Use Cases

4. Evaluations

5. Conclusion and Takeaways
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Self-Managing DRAM Conclusion

New maintenance mechanisms require changes to DRAM standards

With a simple, single modification to the DRAM interface,
SMD enables implementing new in-DRAM maintenance mechanisms

with no further changes to the DRAM interface and other components

We showcase three high-performance and energy-efficient
SMD-based in-DRAM maintenance mechanisms

Our Hope

SMD enables practical adoption of innovative ideas in DRAM design and
inspires better ways of partitioning work between processor and DRAM
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Extended Version on ArXiv
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SMD is Open-Sourced
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Self-Managing DRAM (SMD)
A Low-Cost Framework for 

Enabling Autonomous and Efficient
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Ensuring Forward Progress

•SMD breaks the chain of ACT commands and rejections

•because:
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ACT NACK

Lock Region 0 locked for maintenance

i MC issues the rejected ACT at the end of every RI

ii
region is not locked for at least one RI 
after maintenance ends



Performance Comparison

•DSARP [Chang+, HPCA’14]
• MC-based maintenance-access parallelization
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SMD-CombinedDSARP-Combined

SMD outperforms DSARP
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Pause Maintenance Policy



Sensitivity to Number of Lock Regions
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SMD-based vs. MC-based Scrubbing
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SMD-DRP
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SMD-FR – Implementation
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Pending Refresh 
Counter (PRC)

Lock Region 
Counter (LRC)

Row Address 
Counter (RAC)

increment every 
refresh period



SMD-FR – Implementation
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Pending Refresh 
Counter (PRC)

Lock Region 
Counter (LRC)

Row Address 
Counter (RAC)

Lock the region 
corresponding to LRC

Locked?

PRC>0?

Refresh rows
[RAC, RAC+RG)

Release the
locked region

Increment
LRC and RACDecrement 

PRC

NO

YES

YES

increment every 
refresh period

Refresh Granularity (RG)
number of rows refreshed every time a region is locked



Single-Core Performance
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“PRAC already does this?”
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Problem: DRAM-based systems suffer from two sources of energy inefficiency

1. Coarse-grained cache-block-sized (typically 64-byte) data transfer

2. Coarse-grained DRAM-row-sized (typically 8-kilobyte) activation

A workload does not use all data fetched from DRAM 

Goal: Design a fine-grained, low-cost, and high-throughput DRAM substrate

• Mitigate excessive energy consumption from coarse-grained DRAM

Key Ideas: Small modifications to memory controller and DRAM chip enable

1. Transferring sub-cache-block-sized data in a variable number of clock cycles

2. Activating relatively small physically isolated regions of a DRAM row

based on the workload memory access pattern

Key Results: For the evaluated memory-intensive workloads, Sectored DRAM

• Improves system energy consumption by 14%, system performance by 17%

• Incurs 0.39 mm2 (1.7%) DRAM chip area overhead

• Performs within 11% of a state-of-the-art prior work (Half-DRAM), 

with 12% smaller DRAM energy and 34% smaller area overhead

Sectored DRAM Summary
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Outline

1. Background & Motivation

4. Evaluation

5. Conclusion

2. Sectored DRAM: Design

3. Sectored DRAM: System Integration
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Outline
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5. Conclusion
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3. Sectored DRAM: System Integration
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DRAM is Organized Hierarchically

………
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DRAM Row Activate Operation
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IO interface

64 bits

8 bits

global sense amplifier

global wordline

Wordline driver

Sense amplifier

[Oliveira+, HPCA’24]
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DRAM Row Activate Operation

ro
w
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IO interface

64 bits

8 bits

global sense amplifier

global wordline

[Oliveira+, HPCA’24]
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DRAM Column Read Operation
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IO interface

64 bits

8 bits

global sense amplifier

column to memory controller 

global wordline

[Oliveira+, HPCA’24]
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Cache Block (64 bytes)

DRAM Data Transfer (I)

• DRAM data transfer happens in cache block granularity

[Seshadri+, MICRO’13]

B0 B1 B2 B3 B4 B5 B6 B7

B8 B9 B10 B11 B12 B13 B14 B15

B56 B57 B58 B59 B60 B61 B62 B63

… … … …

Data

Byte 0
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DRAM Data Transfer (I)

• DRAM data transfer happens in cache block granularity

• Using data transfer bursts (or bursts)

[Seshadri+, MICRO’13]

Burst length = 8

0

Beat counter

B0 B1 B2 B3 B4 B5 B6 B7

B8 B9 B10 B11 B12 B13 B14 B15

B56 B57 B58 B59 B60 B61 B62 B63

… … … …
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DRAM Data Transfer (I)

• DRAM data transfer happens in cache block granularity

• Using data transfer bursts (or bursts)

[Seshadri+, MICRO’13]

1

Beat counter

B0 B1 B2 B3 B4 B5 B6 B7

B8 B9 B10 B11 B12 B13 B14 B15

B56 B57 B58 B59 B60 B61 B62 B63

… … … …
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DRAM Data Transfer (I)

• DRAM data transfer happens in cache block granularity

• Using data transfer bursts (or bursts)

[Seshadri+, MICRO’13]

2

Beat counter

B8 B9 B10 B11 B12 B13 B14 B15

B56 B57 B58 B59 B60 B61 B62 B63
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DRAM Data Transfer (I)

• DRAM data transfer happens in cache block granularity

• Using data transfer bursts (or bursts)

8

Beat counter

B56 B57 B58 B59 B60 B61 B62 B63

[Seshadri+, MICRO’13]
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DRAM Data Transfer (II)

• Bits of a burst split across DRAM mats
ro

w
 d

e
c
o
d
e
r

IO interface

64 bits

8 bits

global sense amplifier

columnfrom memory controller

global wordline

B56

[Oliveira+, HPCA’24]
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Coarse-Grained DRAM Data Transfer
Wastes Energy

• Retrieve more bytes than necessary
with each word (e.g., 8 bytes) access

• Goal: Exploit spatial locality

• Problem: Not all words in a cache block 
are referenced by CPU load/store instructions

Retrieved Cache Block (64 bytes)

B0 B1 B2 B3 B4 B5 B6 B7

B8 B9 B10 B11 B12 B13 B14 B15

B56 B57 B58 B59 B60 B61 B62 B63

… … … …

Used Bytes
(e.g., 8 bytes)

B8 B9 B10

B11 B12 B13

B14 B15

Less than 60% of words used on average
(e.g., [Qureshi+, HPCA’07])
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• Activate more mats than necessary
with each DRAM row activation

• Goal: Transfer in a burst, all words of a cache block

• Problem: Not all mats need to be read or updated

Coarse-Grained DRAM Row Activation
Wastes Energy
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w

 d
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r

Bytes 0-7
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s
 0

-7
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Bytes 8-15 Bytes 24-31
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Fine-Grained DRAM Can Greatly Improve 
System Energy Efficiency

Fine-DRAM-Access: Enable word-sized (8-byte) data transfers

Fine-DRAM-Act: Enable per-mat DRAM row activation

Fine-Grained DRAM can improve READ/WRITE (ACTIVATE) 
energy by 27% (4%)
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Challenges of Enabling Fine-Grained DRAM

Maintaining high DRAM data transfer throughput1

Incurring low DRAM area overhead2

Fully exploiting fine-grained DRAM3

Prior works
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Problem and Goal

Develop a new, low-cost, and high-throughput DRAM substrate 
that can mitigate the excessive energy consumption 

of coarse-grained DRAM

No prior work overcomes all three challenges

Goal

Problem

Maintaining high DRAM data transfer throughput1

Incurring low DRAM area overhead2

Fully exploiting fine-grained DRAM3

Problem
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Outline

1. Background & Motivation

4. Evaluation

5. Conclusion

2. Sectored DRAM: Design

3. Sectored DRAM: System Integration
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Two Key Design Components

Two key observations regarding DRAM chip design
enable Sectored DRAM at low cost

• Observation: DRAM mats naturally split DRAM rows
into small fixed-size portions

• Observation: DRAM I/O circuitry can already 
transfer a small portion of a cache block in one beat

Sectored Activation (SA)1

Variable Burst Length (VBL)2
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Component 1: Sectored Activation

• Observation: DRAM mats naturally split DRAM rows
into small fixed-size portions

• To select and activate one or multiple mats:
1. Isolate the global wordline from local wordline drivers

ro
w

 d
e
c
o
d
e
r global wordline

local wordline driver
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Component 1: Sectored Activation

• Observation: DRAM mats naturally split DRAM rows
into small fixed-size portions

• To select and activate one or multiple mats:
1. Isolate the global wordline from local wordline drivers

2. Add a control signal (1 bit) for each mat

ro
w

 d
e
c
o
d
e
r

1 bit 1 bit 1 bit 1 bit

sector transistor

sector latch

sector



207

Component 2: Variable Burst Length

• Observation: DRAM I/O circuitry can already 
transfer a small portion of a cache block in one beat

8 8 8 8 8 8 8 8

Read FIFO

sector

64

8

.  .  .  .  . 

Chip I/O

burst
counter 3
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Component 2: Variable Burst Length

• Observation: DRAM I/O circuitry can already 
transfer a small portion of a cache block in one beat

• Replace the burst counter with an encoder 
that selects only the open/activated sectors

8 8 8 8 8 8 8 8

Read FIFO

64

8

.  .  .  .  . 

Chip I/O

8x3
Encoder 3

activated sectors

8
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Component 2: Variable Burst Length

• Observation: DRAM I/O circuitry can already 
transfer a small portion of a cache block in one beat

• Replace the burst counter with an encoder 
that selects only the open/activated sectors

8 8 8 8 8 8 8 8

Read FIFO

64

8

.  .  .  .  . 

Chip I/O

8x3
Encoder 3

activated sectors

8
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A memory controller can leverage Sectored DRAM
without any physical DRAM interface modifications

Sectored Activation (SA)1

• More than 10 unused bits in precharge (PRE) command encoding
• Determine the sectors opened for the next activate (ACT) command

PRE ACT8 sector bits

Variable Burst Length (VBL)2

• DRAM and memory controller must agree on burst length
• DRAM and memory controller store sector bits for each bank
• Low overhead popcount circuitry to count set (logic-1) sector bits

https://arxiv.org/pdf/2207.13795.pdf

https://arxiv.org/pdf/2207.13795.pdf
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Outline

1. Background & Motivation

4. Evaluation

5. Conclusion

2. Sectored DRAM: Design

3. Sectored DRAM: System Integration
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Efficient System Integration of 

Sectored DRAM is Challenging (I)

Challenge 1: Requires system-wide modifications to enable 
sub-cache-block (e.g., word) granularity data transfers

Solution: Use sector caches (e.g., [Liptay+,1968])

• Extend a cache block with 1 bit for each word

• A bit indicates if its corresponding word is valid

 

Tag
Word 

(8 bytes)

Sector Cache Block

Valid Words
Word 

(8 bytes)
Word 

(8 bytes)…
…

Tag Data (64 bytes)

Cache Block
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Efficient System Integration of 

Sectored DRAM is Challenging (II)

Challenge 2: Missing words (sectors) in a cache block cause 
additional performance overhead

Solution: Develop two prediction techniques

1) A technique to exploit the spatial locality

in subsequent load/store (LD/ST) instructions

2) A spatial pattern predictor (e.g., [Kumar+,1998])
tailored for predicting useful words (similar to [Yoon+, 2012]) 

Tag
Word 

(8 bytes)Valid Words
Word 

(8 bytes)…
…Missing

Word

Load Instruction Target Memory Word
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Efficient System Integration of 

Sectored DRAM is Challenging (II)

Challenge 2: Missing words (sectors) in a cache block cause 
additional performance overhead

Solution: Develop two prediction techniques

1) A technique to exploit the spatial locality

in subsequent load/store (LD/ST) instructions

2) A spatial pattern predictor (e.g., [Kumar+,1998])
tailored for predicting useful words (similar to [Yoon+, 2012]) 

Tag
Word 

(8 bytes)Valid Words
Word 

(8 bytes)…
…Missing

Word

Load Instruction Target Memory Word
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Load/Store Queue (LSQ) Lookahead

• One load/store instruction references one word in main memory

• Key Mechanism: 1) Collect references from 
younger load/store instructions 
2) store the collected references in the oldest load/store instr.

LSQ Lookahead has two key drawbacks

• LSQ is not large enough to store many LD/ST instructions

• Dependencies prevent computation of future LD/ST instruction addresses

A load/store instruction retrieves all words in a cache block 
that will be referenced in the near future to the L1 cache 

with only one cache access
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Sector Predictor (SP)

Key Idea: Complement LSQ Lookahead and minimize sector misses 

• Used (referenced) words in a cache block form a signature

• Reuse this signature when the same cache block misses in the cache

Tag Valid Words Data Used Words Table Index

Previously Used 
Words

. . .

. . .

. . .
History Table

Cache
Block
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1. Background & Motivation

4. Evaluation

5. Conclusion

2. Sectored DRAM: Design

3. Sectored DRAM: System Integration
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Evaluation Methodology
• Performance and energy consumption evaluation: 

Cycle-level simulations using Ramulator 
Rambus Power Model and DRAMPower for DRAM energy
CACTI & McPAT for processor energy estimation

• System Configuration:
Processor  1-16 cores, 3.6GHz clock frequency,

   4-wide issue, 128-entry instruction window

   32 KiB L1, 256 KiB L2, and 8 MiB L3 caches

DRAM  DDR4, 1-4 channel, 4 rank/channel, 4 bank groups,

   4 banks/bank group, 32K rows/bank, 3200 MT/s

Memory Ctrl.  64-entry read and write requests queues,

   Scheduling policy: FR-FCFS with a column cap of 16 
   

• Comparison Points: 3 state-of-the-art fine-grained DRAM mechanisms

- HalfDRAM (best performing), Fine-Grained Activation (lowest area overhead), 
and Partial Row Activation

• Workloads: 41 1-,2-,4-,8-,16-core (multiprogrammed) workloads

- SPEC CPU2006, SPEC CPU2017, DAMOV benchmark suites
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Sectored DRAM Can Greatly
Reduce DRAM ACT and READ Power

Number of sectors
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Sectored DRAM Can Greatly
Reduce DRAM ACT and READ Power

Reading from (activating) one sector 
takes 70% (13%) less power than 

reading from (activating) all 8 sectors

Number of sectors

ACT power is dominated by periphery power
not affected by the number of sectors activated

70%
13%
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Number of Sector Misses

Basic = Sectored DRAM without any sector prediction

LA<N> = LSQ Lookahead with N LSQ entries

SP512 = Sector Predictor with a history table size of 512
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LSQ Lookahead 128 with SP 512 
minimizes the LLC misses caused by sector misses

52%

3.1X

System Configuration

System Configuration
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Speedup
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Speedup

26%

Sectored DRAM provides significant speedups
for highly memory intensive workloads at core count > 2
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Speedup

Sectored DRAM provides significant speedups
for highly memory intensive workloads at core count > 2

Sectored DRAM provides smaller parallel speedup than Baseline 
for non-memory-intensive workloads
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Performance Degradation for 
Non-Memory-Intensive Workloads

• Fetch all sectors of a cache block if the workload access pattern 
does not favor sub-cache-block data transfers

- Based on average MPKI and thresholding

Dynamic policy overcomes the performance degradation
in non-memory-intensive workloads
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System Energy

20%

Sectored DRAM provides significant system energy savings
for highly memory intensive workloads at core count > 2
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Workload Mix Performance Comparison
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Workload Mix Performance Comparison

17%

Sectored DRAM provides 17% average speedup across all mixes
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Workload Mix Performance Comparison

Sectored DRAM provides 17% average speedup across all mixes

2.1X

Outperforms fine-grained activation by 2.1X
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Workload Mix Performance Comparison

Sectored DRAM provides 17% average speedup across all mixes

10%

Outperforms fine-grained activation by 2.1X

Outperforms Partial Row Activation by 10%
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Workload Mix Performance Comparison

Sectored DRAM provides 17% average speedup across all mixes

11%

Outperforms fine-grained activation by 2.1X

Outperforms Partial Row Activation by 10%

Performs within 11% of HalfDRAM
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Workload Mix DRAM Energy Comparison

Sectored DRAM enables larger DRAM energy savings
compared to prior works

13% 84% 12%

Savings are attributed to 
i) finer-grained data transfer and activation than HalfDRAM
ii) background power reduction compared to PRA and FGA
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Area Overhead Estimation

DRAM

• Sector transistors, sector latches, wiring

• 8 additional local wordline driver stripes

• Model DRAM chip using CACTI
- Sectored DRAM: 1.7% of DRAM chip area

- Partial Row Activation and Fine Grained Activation: 1.7%

- HalfDRAM: 2.6%

Processor

• Sector bits (indicate valid words): 1 byte/cache block

• Sector predictor: 1088 bytes/core

• Model processor storage area overhead using CACTI
- 8-core processor area increases by 1.2%
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More in the Paper

• Microbenchmark performance evaluation
- Sectored DRAM greatly benefits random access workloads 

• Performance & energy sensitivity analysis
- Number of DRAM channels

- Performance with prefetching enabled

• Discussion on
- Finer-granularity sector support (i.e., >8 sectors)

- Compatibility with DRAM Error Correcting Codes
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More in the Paper

• Sectored DRAM implementation 
and system integration details

• Microbenchmark performance evaluation
- Sectored DRAM greatly benefits random access workloads 

• System throughput and energy per workload

• DRAM energy breakdown

• Performance & energy sensitivity analysis
- Number of DRAM channels

- Performance with prefetching enabled

• Discussion on
- Finer-granularity sector support (i.e., >8 sectors)

- Compatibility with DRAM Error Correcting Codeshttps://arxiv.org/pdf/2207.13795.pdf

https://arxiv.org/pdf/2207.13795.pdf
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Sectored DRAM Conclusion
Designed a fine-grained, low-cost, and high-throughput DRAM substrate

• Mitigates excessive energy consumption of coarse-grained DRAM

Key Ideas: Small modifications to memory controller and DRAM chip enable

Key Results: For the evaluated memory-intensive workloads, Sectored DRAM

• Improves system energy consumption by 14%, system performance by 17%

• Incurs 0.39 mm2 (1.7%) DRAM chip area overhead

• Performs within 11% of a state-of-the-art prior work (Half-DRAM), 

with 12% less DRAM energy and 34% less area overhead
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1 bit 1 bit 1 bit 1 bit

sector transistor

sector latch

sector

Sectored Activation

8 8 8 8 8 8 8 8

Read FIFO

64

8

.  .  .  .  .  

Chip I/O

8x3
Encoder 3

activated sectors

8

Variable Burst Length
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Sectored DRAM is Published in ACM TACO

https://dl.acm.org/doi/abs/10.1145/3673653

https://dl.acm.org/doi/abs/10.1145/3673653
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Extended Version on Arxiv

https://arxiv.org/pdf/2207.13795.pdf

https://arxiv.org/pdf/2207.13795.pdf
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Sectored DRAM is Open Source

https://github.com/CMU-SAFARI/Sectored-DRAM

https://github.com/CMU-SAFARI/Sectored-DRAM
https://github.com/CMU-SAFARI/Sectored-DRAM
https://github.com/CMU-SAFARI/Sectored-DRAM
https://github.com/CMU-SAFARI/Sectored-DRAM
https://github.com/CMU-SAFARI/Sectored-DRAM


Sectored DRAM
A Practical Energy-Efficient 

and High-Performance 

Fine-Grained DRAM Architecture

Ataberk Olgun
olgunataberk@gmail.com

F. Nisa Bostanci     Geraldo F. Oliveira     Yahya Can Tugrul    Rahul Bera

A. Giray Yaglikci    Hasan Hassan    Oguz Ergin    Onur Mutlu

Paper GitHub

mailto:olgunataberk@gmail.com


Backup Slides



243

Sectored DRAM Subarray Organization 
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Exposing Sectored DRAM to the Memory Controller 
with No Interface Modifications

Sectored Activation (SA)1

• More than 10 unused bits in precharge (PRE) command encoding
• Determine the sectors opened for the next activate (ACT) command

PRE ACT8 sector bits

Variable Burst Length (VBL)2

• DRAM and memory controller must agree on burst length
• DRAM and memory controller store sector bits for each bank
• Low overhead popcount circuitry to count set (logic-1) sector bits

Activating fewer than all 8 sectors relaxes power constraints
allows for higher ACT command throughput
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Sector Predictor
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Load/Store Queue (LSQ) Lookahead

• One load/store instruction references one word in main memory

• Key Mechanism: 1) Collect references from 
younger load/store instructions 
2) store the collected references in the oldest load/store instr.

A load/store instruction retrieves all words in a cache block 
that will be referenced in the near future to the L1 cache 

with only one cache access
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Evaluated Workloads
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Microbenchmark Performance
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Parallel Speedup and System Energy 
per Workload
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DRAM Energy Breakdown 
and System Energy
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Performance Sensitivity to 
Number of Channels
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Sectored DRAM with Prefetching
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Enabling Higher Row Activation Rate

• tFAW = 25 nanoseconds (ns)

• 32 sectors can be activated in a tFAW

• Only 10 activate commands can be issued in 25 ns 
due to tRRD_L and tRRD_S 

• 10 ACT, each of which activate one sector
takes 20% less power than
4 ACT, each of which activates 8 sectors
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Sectored DRAM vs 
Module-Level Mechanisms

• DRAM interface modifications vs. DRAM chip modifications

• Low overhead module-level mechanism 
induces 23% overhead 
where Sectored DRAM provides 17% speedup

- Command bus becomes the bottleneck

- Alleviating command bus bottleneck is area expensive

• System integration heavily inspired by DGMS
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Discussion (I)

• Mitigate Sectored DRAM’s performance overheads
- Better sector prediction/prefetching

- Sector annotation (?): Software-guided sector ``prefetching’’

- Enable subarray-level parallelism
• Scatter-gather DRAM (inside a chip)

• Better explore Sectored DRAM’s use cases

• Memory compression and Sectored DRAM
- Compress cache blocks in main memory

- Transfer compressed cache block using Sectored DRAM

- Benefit: NO performance overhead because no sector misses
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Discussion (II)

• Even finer-grained DRAM
- Activate only as many cells as you read

• Terribly area-expensive

• Either 1) Need 64 data lines (word size) coming out of every mat

• 2) Need a way to “mask” activation of many cells in a row

• Need very small (64 or fewer cells wide) DRAM mats

• How to leverage row buffer locality 
if we activate only 64 cells (a word)?

• Activate more than 64 cells
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