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Executive Summary

* Background:

- A hybrid storage system (HSS) uses multiple different storage devices to provide scalable storage
capacity at high performance.

- The performance of an HSS highly depends on the effectiveness of its (1) data-placement, and (2)
data-migration policies.
* Problem: Two key shortcomings of prior HSS data-management techniques:

- Prior techniques focus on improving only data-placement or only data-migration policies, but do not
optimize both.

- Naively combining prior data-placement and data-migration techniques provide sub-optimal performance
due to lack of coordination between the two policies.

: Design a holistic data management technique that (1) data-placement and data-
migration policies, and (2) between the two policies.

* Contribution: Harmonia, the first multi-agent online reinforcement learning-based
HSS data-management technique that:
- Performs combined optimization of both data placement and data migration policies
- Achieves coordination between data placement and data migration to avoid conflicting decisions
- Provides adaptivity to changing workload demands and underlying device characteristics
- Can easily extend to any number of storage devices

* Key Results: Evaluate on real systems using seventeen data-intensive workloads

- Harmonia improves performance by 32%/33% compared to the best previous data placement
technique in performance-optimized/cost-optimized dual-HSS configuration.

- Inatri-/quad-HSS configuration, Harmonia outperforms the state-of-the-art policy by 37% /42 %.

- Harmonia’s performance benefits come with low latency (240ns for inference) and storage overheads
(206 KiB in DRAM for both RL agents together).
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Talk Outline

Key Shortcomings of Prior Techniques
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Hybrid Storage System

Application/File System
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Hybrid Storage System (HSS)
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Hybrid Storage System

Performance of a hybrid storage system
highly depends on the ability of the
HSS management layer
to effectively perform
data placement and data migration
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Key Shortcomings in Prior Techniques

We observe two key shortcomings that significantly
limit the performance benefits of prior data-
management techniques:

Prior techniques do not optimize both
data-placement and data-migration policies together

Naive combination of prior data-placement and
data-migration techniques achieves sub-optimal
performance due to lack of coordination
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Avg. Request

Lack of a Holistic Data Management in HSS

* Prior techniques

- do not optimize both data placement and data migration policies
together

- use heuristic approaches, which do not adapt to changes in
workload access patterns and HSS conditions
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The large performance gap between the best-performing prior
approach, Sibyl, and Oracle is due to its heuristic migration policy
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Lack of Coordination in Extended Techniques

°* Naive combination of prior data-placement and data-migration
techniques shows sub-optimal performance

° Lack of coordination between data-placement and data-migration
techniques result in conflicting decisions

BSibyl+K-SVM BSibyl+RNN-HSS B Sibyl+K-SVM = Sibyl+RNN-HSS
O CDE + RL-Migr ®mSibyl @ CDE + RL m Sibyl
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Naive combinations of prior techniques underperform even
compared to the best-performing standalone data-placement policy

SAFARI] E




Limitations of a Single-Agent RL Technique

* An RL-based technique can adapt to changes in workload and HSS
configurations

- Sibyl is the best-performing prior HSS data-management technique

* Data placement and data migration are two different tasks in HSS with
different objectives

* A single RL agent based technique cannot optimize different tasks
concurrently because it relies on task similarity to learn multiple tasks

BESAPM m Sibyl ESAPM m Sibyl
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SAPM achieves lower performance than Sibyl because it

cannot learn optimal policies for two ditferent tasks concurrently
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Our Goal

A holistic data management
mechanism that :

1. Performs combined optimization of both
data-placement and data-migration policies

2. Achieves coordination between data-placement
and data-migration policies

SAFARI]
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Our Proposal

Harmonia

A holistic HSS data-management technique that uses
multi-agent online reinforcement learning to achieve
(1) combined optimization of data-placement and
data-migration policies
(2) coordination between the two policies

Harmonia is the Greek goddess of harmony and balance

SAFAR’ https://en.wikipedia.org/wiki/Harmonia 12



Talk Outline

HSS Data Management using Reinforcement Learning
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Formulating Data Management as RL

State (s,)

Action (a,) .
Environment

Reward (r,.,)
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Data
Migration
Agent

Action
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Data
Placement
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Reward Reward
(Immediate) (Delayed) 14
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What is State? j[ e F—

Hybrid Storage
* Limited number of state features: S

- Reduce the implementation overhead
- RL agent is more sensitive to reward

 7-dimensional vector of state features

0, = (size,, type,, intr,, cnt,, cap,, curr,, migr,)

* We quantize the state representation into bins to
reduce storage overhead
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What is Reward? i\/f —

Features | Reward Action

* Defines the objective of Harmonia’s |

age IltS | Hybglif;;rage I

« We formulate the reward as

Rplacement: (1/LatenCyCurrent_request) ) Step reward for data placement

* Deferred reward for data migration
. * Reward is issued based on the
S L] (« )
Roigr_delaged = § St i placement latencies of ‘n r.equgsts
0 otherwise ~* P penalty based on migration
interval to avoid ping-pong migration

— Pmigr, after migrating x pages

* Latency encapsulates two key aspects:

- Internal state of the device (e.g., read/write latencies, the
latency of garbage collection, queuing delays, ...)

- Throughput
SAFARI 16



What is Action? (N = R

Features Reward

Act/or)
* Data Placement Hybﬁd!mge S
- At every new page request, the 4[ yeem }7
action is to select a storage device
to place the /0 request data

* Data Migration

- For every page already placed in HSS, select the storage
device to migrate the data

* Action can be easily extended to any number of
storage devices
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Talk Outline

Harmonia: Overview
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Harmonia: Design
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Harmonia: RL Agent Design
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Talk Outline

Evaluation and Key Results
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Evaluation Methodology (1/2)

* Real system with various HSS configurations
- Dual-hybrid, tri-hybrid and quad hybrid storage systems

Cost-Optimized HSS
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Evaluation Methodology (2/2)

- Eight data-management ° 17 data-intensive workloads

baselines: from:
' - Yahoo! Cloud Serving Benchmark
(YCSB): Cloud Database
[ Data Placement ] workloads (e.g., data collected
CDE from insert, update, read, scan)
Sibyl
- SYSTOR "17: Traffic on enterprise
[ Data Migration ] virtual desktop infrastructure
(VDI)
RNN-HSS
K-SVM
- YCSB RocksDB: Key-value store
[ Extended Techniques ] - MLPerf Storage: Image
Sibyl + K-SVM Classification and Cosmology
Sibyl + RNN-HSS Parameter Prediction
CDE + RL-Migr
SAPM
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Performance-Optimized HSS

Performance Analysis (1/2) LMJ@}

" High-endSSD  Mid-end SSD

B CDE B K-SVM RNN-HSS
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SYSTOR17 RocksDB YCS MLPerf
Harmonia

(1) improves average performance by 32% over Sibyl
(2) bridges the performance gap between Sibyl and Oracle by 64%
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Performance Analysis (2/2)| m

" High-end SSD Low- end HDD

Cost-Optimized HSS

B CDE 2 K-SVM RNN-HSS
Sibyl + K-SVM B Sibyl + RNN-HSS &CDE+RL-Migr
2 SAPM B Sibyl E Harmonia
Oracle
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(1) improves average performance by 33% over Sibyl
(2) bridges the between and by
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Extensibility Analysis

Extending Harmonia for more devices:
1. Add a new action in each agent
2. Add the remaining capacity of the new device as a
state feature for each agent

=
o,
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Extensibility Analysis

Harmonia achieves higher performance
improvement over prior approaches as the
number of storage devices increases

SAFARI]
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Harmonia: Overhead Analysis

* 206 KiB of total storage cost
- Experience buffer, inference and training network

* 32-bit metadata overhead per page for state features

* Inference Latency - 240ns
* Training Latency - 53us (background)

V Small storage overhead

v Small inference overhead
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More in the Paper (1/2)

Throughput (IOPS) evaluation

- Harmonia provides high end-to-end throughput compared to baseline policies because
it indirectly captures throughput (size/latency)

Evaluation on mixed workloads

- Harmonia provides higher performance benefits when multiple workloads are
executed concurrently

Tail latency analysis

- Harmonia significantly improves tail latency by performing data migration
operations during system idle times

Performance sensitivity to
- Migration queue size
- Number of incoming requests considered in migration agent’s reward

Convergence of Harmonia’s policies

- Both data-placement and data-migration policies converge in less than
8K I/0 requests
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More in the Paper (2/2)

Harmonia: A Multi-Agent Reinforcement Learning Approach
to Data Placement and Migration in Hybrid Storage Systems

Rakesh Nadig? ~ Vamanan Arulchelvan®  Rahul Bera Taha Shahroodi® Gagandeep Singh’
Andreas Kakolyris ~Mohammad Sadrosadati®  Jisung Park’  Onur Mutlu®
SETH Ziirich T AMD Research VPOSTECH
Abstract

Hybrid storage systems (HSS) combine multiple storage devices
with diverse characteristics to achieve high performance and ca-
pacity at low cost. The performance of an HSS highly depends on
the effectiveness of two key policies: (1) the data-placement policy,
which determines the best-fit storage device for incoming data,
and (2) the data-migration policy, which rearranges stored data
(i.e., prefetches hot data and evicts cold data) across the devices
to sustain high HSS performance. Prior works focus on improving
only data placement or only data migration in HSS, which leads to
relatively low HSS performance. Unfortunately, no prior work tries
to optimize both policies together.

Our goal is to design a holistic data-management technique that
optimizes both data-placement and data-migration policies to fully
exploit the potential of an HSS, and thus significantly improve
system performance. We demonstrate the need for multiple rein-
forcement learning (RL) agents to accomplish our goal. We propose
Harmonia, a multi-agent reinforcement learning (RL)-based data-
management technique that employs two lightweight autonomous
RL agents, a data-placement agent and a data-migration agent,

whirh adant their naliriee far the euirrent wnrlklnad and HSS ran-

policy determines the best-fit storage device in the HSS for incoming
I/0 requests. The data-migration policy rearranges data across the
storage devices (i.e., prefetches frequently-accessed data to the fast
device and evicts cold data to the slow device) to sustain high HSS
performance, which can degrade over time due to (1) misplacement
of data, and (2) changes in workload access patterns.

We identify four key challenges in designing efficient data-place-
ment and data-migration policies. First, workload access patterns
and HSS conditions (e.g., access latencies, device capacity utiliza-
tion) can change frequently in data-intensive environments, which
makes it hard to optimize the policies. Second, the data-placement
policy should have a low performance overhead as it operates on
the critical path of I/O request handling. Third, the data-migration
policy needs to migrate data across storage devices in a timely man-
ner without impacting the latency of incoming I/O requests. Fourth,
the two policies should not make conflicting decisions, which can
adversely impact HSS performance and device lifetimes.
Limitations of prior works. Prior works propose techniques for
either data placement (e.g., [5-7. 9, 13-33, 52-68]) or data migra-
tion (e.g., [7. 11, 30, 33, 69-73]), but they provide relatively low
performance when employed together or alone. Our motivational

https://arxiv.org/pdf/2503.20507.pdf
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Talk Outline

Conclusion
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Harmonia: Summary

@ First work to use multi-agent online reinforcement
learning to optimize data management in HSS

Improves performance

‘./il by 32%/33% over the best-performing prior work
on performance-optimized/cost-optimized dual HSS

Achieves higher performance improvement over
prior approaches when more storage devices are added

® Low inference latency and storage overheads
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State Features in Harmonia

Feature Description # of bins | Encoding (bits)
req_type Request type (read/write) 2 1
req_size Request size (in pages) 8 3
A .
acc intr ccess interval 64 g
of the requested page
Access frequency
64 3
acc_freq of the requested page
Free space
fast_cap in the fast storage device 8 )
Storage device where the
curr_dev . 2 1
requested page currently resides
migr_intr| Migration interval of a page 64 8

SAFARI]
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Training and Inference Network

* Training and inference
network allow
paraIIEI execution ‘ Probabilility distribution

of the actions
(place data in the fast or
the slow storage)

Fully-connected
layer
(30 neurons)

 Observation vector as
the input

't swish
__|activation
Fully-connected
layer
(20 neurons)

* Produces probability

. . . Observation vector
d 1 Stl‘lb ution o f <size; type; intr; cnt; cap; currs>

Q-values
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Hyper-parameter Tuning

* Different hyper-parameter configurations were chosen

using the design of experiments (DoE) technique

SAFARI]

. Placement | Migration
Hyper Parameter Design Space
Agent Agent

Discount Factor (y) 0-1 0.9 0.1
Learning Rate (@) le > — 1¢° le”3 le™?
Exploration Rate (¢) 0-1 0.001 0.001
Batch Size 64-256 128 256
Experience Buffer Size 10-10000 1000 1000
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Evaluation Methodology
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AMD Ryzen 7 2700G[110],
8-cores@3.5 GHz, 8x64/32 KiB L1-I/D,

Host System 4 MiB L2, 8 MiB L3,
16 GiB RDIMM DDR4 2666 MHz
Storage Devices Characteristics
375 GB, PCle 3.0 NVMe, SLC,
H: Intel Optane SSD P4800X [47] R/W: 2.4/2 GB/s,

random R/W: 550000/500000 IOPS

M: Intel SSD D3-S4510 [48]

1.92 TB, SATA TLC (3D),
R/W:560/510 MB/s,
random R/W: 895000/21000 IOPS

L: Seagate HDD ST1000DMO010 [108]

1 TB, SATA 6Gb/s 7200 RPM
Max. Sustained Transfer Rate: 210 MB/s

Lssp: ADATA SU630 SSD [111]

960 GB, SATA, TLC,
R/W: 520/450 MB/s

PMEM (Emulated): Intel Optane
Persistent Memory 200 Series [112

128 GB, Memory Mode
R/W: 7.45/2.25 GB/s (256B)

HSS Configurations

Devices

Performance-Optimized

high-end (H) & middle-end (M)

Cost-Optimized

high-end (H) & low-end (L)

HSS with PMEM Emulated PMEM (PMEM) & high-end SSD (H)
Tri-HSS high-end (H) & middle-end (M) & low-end (L)
Quad-HSS high-end (H) & middle-end (M) &

low-end SSD (Lssp) & low-end HDD (L)

38



Workload Characteristics

Benchmark Traces | Read “ Avg. Request Avg. Inter-
Suite ’ Size (KB) Request Time (us)
LUNO 0.2 31.7 1163.9
LUN1 0.3 34.2 1864.1
SYSTOR17 LUN2 7.6 31.1 1418.9
[113] LUN3 35 427 7345
LUN4 0.5 26.3 823.1
ssd-00 79.9 108.9 66.4
ssd-01 73.5 75.1 40.7
RocksDB ssd-02 79.9 7.5 3.3
[114] 58d-03 79.9 95 35
ssd-04 79.9 7.8 3.6
YCSB-B 51.3 45.9 9.3
YCSB-C 47.6 54.6 6.5
YCSB YCSB-D 55.9 36.1 8.5
[115] YCSB-E | 521 6.6 9.6
YCSB-F 49.5 53.1 6.6
MLPerf Storage ResNet50 80.0 172.6 500.1
[116] CosmoFlow | 83.4 180.1 1023.8

SAFARI]

39



Multi -Programmed Workloads

Mix Constituent Description
Workloads [113-115] P
) ssd-02 is read-intensive
mix1 s5d-02 and LUN4 and LUN4 is write-intensive
3 . — .
mix2 LUN1 and ssd-04 UNO is write-intensive
and ssd-04 is read-intensive
mix3 YCSB-C and YCSB-F Both have near-equal read-write ratio
x4 ssd-00, ssd-04, Two read-intensive
YCSB-A and LUNO and two write-intensive workloads
| oz, | Rt vl
YCSB-C and YCSB-F ) )
near-equal read-write ratio
| YCSB-B, YCSB-D, LUN0, LUN, | ¥© With near-edual read-write ratio,
mix LUN4, ssd-00, ssd-02, ssd03 . .
and three read-intensive
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Throughput Analysis

B CDE B K-SVM RNN-HSS
m Sibyl @ Sibyl + K-SVM @ Sibyl + RNN-HSS
B CDE + RL-Migr B SAPM B Harmonia
Oracle
1.0 i
0.8 1 (a)Performance-Optimizéltd HSS
s i
a 0.6 i :
B 04 |
TE oo -
N E 0.0 i i H ! "
ERS PP 0.48 | 0.16
B g 0.20[N (b) Cost-Optimized HSS,
C Y ] I
“go |
%o :
£a) |
|

YCSB MLPerf AVG
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Throughput Analysis

Harmonia improves end-to-end throughput
by 49.4% (156.2%) over Sibyl in
performance- (cost-) optimized HSS

SAFARI] 42



Multi-Programmed Workloads (1/2)
Performance-Optimized HSS M"’J

~ High-endSSD ~ Mid- end SSD

B CDE B K-SVM RNN-HSS M Sibyl
E Sibyl+K-SVM & Sibyl+RNN-HSS 1 CDE + RL-Migr = SAPM
. E Harmonia Oracle
- ]
T
S 2 3 :
e :
2 84 :
i ) ] o 5 } vl ot
1)) ] o ! i
> . -y ! i ot
< ] o : 3@
0 _ ') ] ! L ] = =
mix 1 mix_2 mix_3
Harmonia on

average over best-performing prior work, Sibyl
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Multi-Programmed Workloads (2/2)
Cost-Optimized HSS {Mﬁ" }

" High-end SSD Low-end HD

B CDE @ K-SVM RNN-HSS B Sibyl
B Sibyl + K-SVM  8Sibyl + RNN-HSS & CDE + RL-Migr &SAPM
B Harmonia Oracle
150
-
a >)120
% ' 90
o % 60
gﬂ - 30
< 0 !
mix1 mix2 mix3 mix4 mix5 mixé6
Harmonia over

Sibyl due to faster learning of access pattern

variations Compared to DFIOI‘ approaches
SAFART %




[ T

" High-endSSD  Mid-end SSD

Tail Latency

== Fast-Only = Oracle == Harmonia
« « + +Sibyl —=CDE + RL-Migr = «= CDE
e RNN-HSS - «= KSVM Sibyl+K-SVM

===:Sibyl+RNN-HSS -« -+:SAPM

S A
: ;
7 S
7 P
104 105 109102 105 102 103 104 105 10°
(a) 99 Percentile Request Latency (us)
L o T
0.99998 - o) Lo :
0.99996 - ¢ :
0.99994 - g 1
0.99992 - % ) I
0.9999 : 4

102 103 104 105 109102 103 104 105 102 103 104 105 10°
(b) 99.99 Percentile Request Latency (us)
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Tail Latency (MJ@}

" Hiah-endSSD  Mid-end SSD

Prior approaches have high tail latency
because they migrate data in the
critical path of I/0 request handling

Harmonia improves tail latency by
migrating data during system idle times
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Impact on Device Lifetimes

B CDE B K-SVM RNN-HSS
mE Sibyl = Sibyl + K-SVM B Sibyl + RNN-HSS
@ CDE+RL-Migr BESAPM B Harmonia
Oracle
3 (a) Performance-Optimized HSS :
.g 2 e = i i
= i i g
o= Y i I i
—Q‘.‘ 0O - L FE h! I 5
5 3 (b) Cost-Optimized HSS :
8 2 7 F:ri " = : =
ol = I
( " N ::% |
1 \ \ -
= \ \ ;ngl
0 - i N 0 M N S I L
SYSTOR17 RocksDB YCSB MLPer AVG
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Impact on Device Lifetimes

Harmonia learns to migrate more data in read-
intensive workloads, since there are infrequent
updates from the application

Harmonia migrates less data in
write-intensive workloads as data is moved
during updates from application, which causes
lower write amplification

SAFARI]




Convergence of Harmonia’s Policies

Training
Loss
C m NW L WU

4] 2 4 6 8 10 O 2 4 6 8 10
Number of I/0 Requests (in thousands)
(a) Data-Placement Agent (b) Data-Migration Agent
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Sensitivity Analysis

o g
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Migration Queue Size

' Number of I/O requests used

1 for migration agent’s reward



Write Traffic Distribution

O Fast Device Writes ©ESlow Device Writes

100%
75%
50%
25%

0%

x(] 9?’ C QG y’] 0?) eg& qG
ST &‘2 > g M
5‘1 0 5‘1
(a) Performance- (b) Cost-Optimized
Optimized HSS HSS
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