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• Background: 
- A hybrid storage system (HSS) uses multiple different storage devices to provide scalable storage 

capacity at high performance.
- The performance of an HSS highly depends on the effectiveness of its (1) data-placement, and (2) 

data-migration policies. 

• Problem: Two key shortcomings of prior HSS data-management techniques:
- Prior techniques focus on improving only data-placement or only data-migration policies, but do not 

optimize both.
- Naively combining prior data-placement and data-migration techniques provide sub-optimal performance 

due to lack of coordination between the two policies.

• Goal: Design a holistic data management technique that (1) optimizes both data-placement and data-
migration policies, and (2) achieves coordination between the two policies.

• Contribution: Harmonia, the first multi-agent online reinforcement learning-based 
HSS data-management technique that:

- Performs combined optimization of both data placement and data migration policies
- Achieves coordination between data placement and data migration to avoid conflicting decisions 
- Provides adaptivity to changing workload demands and underlying device characteristics 
- Can easily extend to any number of storage devices 

• Key Results: Evaluate on real systems using seventeen data-intensive workloads
- Harmonia improves performance by 32%/33% compared to the best previous data placement 

technique in performance-optimized/cost-optimized dual-HSS configuration.
- In a tri-/quad-HSS configuration, Harmonia outperforms the state-of-the-art policy by 37%/42%.
- Harmonia’s performance benefits come with low latency (240ns for inference) and storage overheads 

(206 KiB in DRAM for both RL agents together).

Executive Summary
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Performance of a hybrid storage system 
highly depends on the ability of the 

HSS management layer 
to effectively perform 

data placement and data migration



Prior techniques do not optimize both 
data-placement and data-migration policies together

Key Shortcomings in Prior Techniques
We observe two key shortcomings that significantly 
limit the performance benefits of prior data-
management techniques:
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Naïve combination of prior data-placement and 
data-migration techniques achieves sub-optimal 

performance due to lack of coordination



Lack of a Holistic Data Management in HSS
• Prior techniques

- do not optimize both data placement and data migration policies 
together

- use heuristic approaches, which do not adapt to changes in 
workload access patterns and HSS conditions
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The large performance gap between the best-performing prior 
approach, Sibyl, and Oracle is due to its heuristic migration policy
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Lack of Coordination in Extended Techniques
• Naïve combination of prior data-placement and data-migration 

techniques shows sub-optimal performance
• Lack of coordination between data-placement and data-migration 

techniques result in conflicting decisions
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Naïve combinations of prior techniques underperform even 
compared to the best-performing standalone data-placement policy
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Limitations of a Single-Agent RL Technique
• An RL-based technique can adapt to changes in workload and HSS 

configurations
- Sibyl is the best-performing prior HSS data-management technique

• Data placement and data migration are two different tasks in HSS with 
different objectives

• A single RL agent based technique cannot optimize different tasks 
concurrently because it relies on task similarity to learn multiple tasks
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SAPM achieves lower performance than Sibyl because it 
cannot learn optimal policies for two different tasks concurrently
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Our Goal

A holistic data management 
mechanism that :

1. Performs combined optimization of both 
data-placement and data-migration policies

2. Achieves coordination between data-placement 
and data-migration policies
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Our Proposal

Harmonia
A holistic HSS data-management technique that uses  
multi-agent online reinforcement learning to achieve
(1) combined optimization of data-placement and 

data-migration policies 
(2) coordination between the two policies 

Harmonia is the Greek goddess of harmony and balance
https://en.wikipedia.org/wiki/Harmonia 12
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Formulating Data Management as RL
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• Limited number of state features:
- Reduce the implementation overhead
- RL agent is more sensitive to reward

• 7-dimensional vector of state features
   0t = (sizet , typet , intrt , cntt , capt , currt , migrt )

• We quantize the state representation into bins to 
reduce storage overhead

What is State?

Hybrid Storage 
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Harmonia
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What is Reward?
• Defines the objective of Harmonia’s 

agents
• We formulate the reward as

Rplacement = (1/Latencycurrent_request)

• Latency encapsulates two key aspects:
- Internal state of the device (e.g., read/write latencies, the 

latency of garbage collection, queuing delays, …)
- Throughput

Hybrid Storage 
System

Harmonia

Features Reward Action
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• Step reward for data placement

• Deferred reward for data migration
• Reward is issued based on the 

placement latencies of ‘n’ requests
• Pmigrt : penalty based on migration 

interval to avoid ping-pong migration



What is Action?
• Data Placement

- At every new page request, the                                     
action is to select a storage device 
to place the I/O request data

• Data Migration
- For every page already placed in HSS, select the storage 

device to migrate the data

• Action can be easily extended to any number of 
storage devices

Hybrid Storage 
System

Harmonia

Features Reward Action
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Harmonia: Design
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Harmonia: RL Agent Design
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Evaluation Methodology (1/2)
• Real system with various HSS configurations

- Dual-hybrid, tri-hybrid and quad-hybrid storage systems
AMD Ryzen7 
2700G CPU

Seagate HDD 
ST1000DM010

Intel Optane 
SSD P4800X

Intel SSD         
D3-S4510

ADATA 
SU630 SSD 
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Evaluation Methodology (2/2)
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Data Placement

• Eight data-management 
baselines:

• CDE [Matsui+, Proc. IEEE’17]
• Sibyl [Singh+, ISCA 2022] 

Data Migration
• RNN-HSS [Doudali+, HPDC’19]
• K-SVM [Shetti+, NAS 2022]

Extended Techniques
• Sibyl + K-SVM
• Sibyl + RNN-HSS
• CDE + RL-Migr
• SAPM

• 17 data-intensive workloads 
from:

- Yahoo! Cloud Serving Benchmark 
(YCSB): Cloud Database 
workloads (e.g., data collected 
from insert, update, read, scan)

- SYSTOR ’17: Traffic on enterprise 
virtual desktop infrastructure 
(VDI)

- YCSB RocksDB: Key-value store

- MLPerf Storage: Image 
Classification and Cosmology 
Parameter Prediction



Performance Analysis (1/2)
Performance-Optimized HSS

High-end SSD Mid-end SSD
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Harmonia 
(1) improves average performance by 32% over Sibyl
(2) bridges the performance gap between Sibyl and Oracle by 64%
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Performance Analysis (2/2)
Cost-Optimized HSS

High-end SSD Low-end HDD

25

0

50

100

150

SYSTOR17 RocksDB YCSB MLPerf AVG

CDE K-SVM RNN-HSS
Sibyl + K-SVM Sibyl + RNN-HSS CDE+RL-Migr
SAPM Sibyl Harmonia
Oracle

A
vg

. R
eq

u
es

t 
L

at
en

cy

Harmonia 
(1) improves average performance by 33% over Sibyl
(2) bridges the performance gap between Sibyl and Oracle by 64%

33
%



Extensibility Analysis
Extending Harmonia for more devices:

1. Add a new action in each agent
2. Add the remaining capacity of the new device as a 

state feature for each agent
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Extensibility Analysis
Extending Harmonia for more devices:

1. Add a new action in each agent
2. Add the remaining capacity of the new device as a 

state feature for each agent
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Harmonia achieves higher performance 
improvement over prior approaches as the 

number of storage devices increases



Harmonia: Overhead Analysis
• 206 KiB of total storage cost 

- Experience buffer, inference and training network

• 32-bit metadata overhead per page for state features

• Inference Latency - 240ns 
• Training Latency - 53µs (background)

Small storage overhead

Small inference overhead
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More in the Paper (1/2)
• Throughput (IOPS) evaluation

- Harmonia provides high end-to-end throughput compared to baseline policies because 
it indirectly captures throughput (size/latency)

• Evaluation on mixed workloads
- Harmonia provides higher performance benefits when multiple workloads are 

executed concurrently

• Tail latency analysis
- Harmonia significantly improves tail latency by performing data migration 

operations during system idle times

• Performance sensitivity to
- Migration queue size
- Number of incoming requests considered in migration agent’s reward

• Convergence of Harmonia’s policies
- Both data-placement and data-migration policies converge in less than 

8K I/O requests 



More in the Paper (2/2) 
• Performance sensitivity to:

- Cache hierarchy access latency
- H ermes request issue latency
- Activation threshold
- RO B size (in extended version at arXiv)
- LLC size (in extended version at arXiv)

• Accuracy, coverage, and performance analysis against HMP  and TTP

• Understanding usefulness of each program feature

• Effect on stall cycle reduction

• Performance analysis in eight-core systemhttps://arxiv.org/pdf/2503.20507.pdf

https://arxiv.org/pdf/2503.20507.pdf
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Harmonia: Summary

First work to use multi-agent online reinforcement 
learning to optimize data management in HSS

Improves performance 
by 32%/33% over the best-performing prior work

on performance-optimized/cost-optimized dual HSS

Achieves higher performance improvement over 
prior approaches when more storage devices are added

33

Low inference latency and storage overheads
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State Features in Harmonia
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Training and Inference Network
• Training and inference 

network allow 
parallel execution 

• Observation vector as 
the input 

• Produces probability 
distribution of 
Q-values
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Hyper-parameter Tuning
• Different hyper-parameter configurations were chosen 

using the design of experiments (DoE) technique
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Evaluation Methodology
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Workload Characteristics
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Multi -Programmed Workloads



Throughput Analysis
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Throughput Analysis
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Harmonia improves end-to-end throughput 
by 49.4% (156.2%) over Sibyl in 

performance- (cost-) optimized HSS



Multi-Programmed Workloads (1/2)
Performance-Optimized HSS

High-end SSD Mid-end SSD
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Harmonia improves performance by 33% on 
average over best-performing prior work, Sibyl
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Multi-Programmed Workloads (2/2)
Cost-Optimized HSS
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Harmonia improves performance by 25% over 
Sibyl due to faster learning of access pattern 

variations compared to prior approaches



Tail Latency
High-end SSD Mid-end SSD



Tail Latency
High-end SSD Mid-end SSD

Harmonia improves tail latency by 
migrating data during system idle times

Prior approaches have high tail latency 
because they migrate data in the 

critical path of I/O request handling



Impact on Device Lifetimes
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Impact on Device Lifetimes
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onHarmonia learns to migrate more data in read-
intensive workloads, since there are infrequent 

updates from the application

Harmonia migrates less data in 
write-intensive workloads as data is moved 

during updates from application , which causes 
lower write amplification



Convergence of Harmonia’s Policies
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Sensitivity Analysis
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Write Traffic Distribution
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