CXL Memory Use Cases: Insights into Expansion and Pooling PRESENTER Minseong Kim

TABLE OF CONTENTS

Why do we need CXL Memory?

- Memory Capacity Requirement
- Memory Capacity Gap in Al applications & GPUs

CXL Usage Model Tree

- Single Server Bandwidth Expansion and Capacity Expansion
- Multiple Servers Pooling & Sharing

CXL Memory Usage Model Survey

- Bandwidth Expansion / Capacity Expansion / Tiering
- Memory Pooling & Sharing

Experimental Results

- Bandwidth Expansion Case Single Server with LLM Inference
- Capacity Expansion Case Single Server with Redis IMDB
- Memory Pooling Case Multiple Servers with Redis IMDB

Why do we need CXL Memory?

Memory wall exists relative to CPU Core Count, and memory wall also exists in GPU-based Al Memory System Need to overcome the difficulty of high-capacity scaling with pooling/switching-based scale-up/scale-out

Memory Capacity Requirement (CPU)

Memory Capacity Gap in Al applications & GPUs

CXL Memory Usage Model Tree

✓ We explore primary approaches to utilizing the CXL Memory Module.

CXL Memory Usage Model Survey

Category	Capacity Expansion	Bandwidth Expansion	Tiered Memory	Pooling/Sharing	Notes
SK hynix	In-memory Database Redis + YCSB	LLM Inference (Llama.cpp + Llama3)	1) In-memory DB, 2) LLM Inference (Redis + memtier_bench, Llama.cpp + Llama3)	In-memory DB In-memory Analytics (CloudSuite) Ray Shuffle	
SAMSUNG	DLRM inference/training ¹⁾	DLRM inference/training ¹⁾		In-memory DB ²⁾ (TPC-DS on SAP HANA)	IMDG Databases & Caches AI/ML Workloads Financial Services
micron AMD	In-memory DB (MSSQL + TPC-H)	HPC (CloverLeaf)	Apache Spark Based Machine Learning (SVM) (Big Data Workload)		
_micron 4)	1) PostgreSQL + TPC-H 2) RocksDB + db_bench 3) RAG Pipeline				
MemVerge			Weaviate Vector DB on gist dataset (ANNS) 5)		
Azure	Azure Service (PoC) Various Benchmark			Azure Service (PoC) Various Benchmark	Pond (ASPLOS 23) Octopus (2025)

✓ We focus performance analysis of IMDB and LLM Inference across various scenarios.

https://download.semiconductor.samsung.com/resources/white-paper/CMM-B.whitepaper-

^[3] White Paper: CXL Memory Expansion: A Closer Look on Actual Platform [4] Enhance AI & Database Performance: Experience Micron's CZ122 at OCP

Bandwidth Expansion Case – Single Server

We ask a question to Al model, CMM+DDR shows 30% better performance of system. Next CMM has 2x better BW compared to Al model result of current product.

Capacity Expansion Case – Single Server

We use the YCSB benchmark for the Redis in-memory database.

CMM allows us to load a database up to the additional CMM capacity on a single server without throughput drop.

Memory Pooling Case – Multiple Servers

We evaluated the performance of the Redis using the YCSB benchmark with CXL Memory Pooling. We found no significant performance difference. This confirms that IMDB is a suitable use case for CXL memory pooling.

Questions?

