NVMe-oC Powered Memory Tiering: Unlocking Cost-Effective Data Management in DC

San Chang, Tai-Chun Kuo, Bearman Tsao, Po-Ting Yeh
san@wolleytech.com
Wolley Inc.

Memory Is Not Scaling Fast Enough

- DRAM bandwidth grows slowly; HBM capacity gains are incremental
- Emerging workloads such as AI demand memory systems far beyond today's limits

NVMe-over-CXL: Unlocking Both Bandwidth and Capacity

"NVMe-oC, with DAX-tiering, unifies DRAM, CXL, and SSD into a seamless and scalable memory architecture"

DAX-Tiering: DRAM + HDM + SSD with Auto-Tiering

- DAX (2024): Combines SSD and HDM, enabling mmap access and internal HDM-to-SSD data movement
- DAX-Tiering (2025): Adds DRAM as the top layer, dynamically promoting/demoting data across DRAM → HDM → SSD for higher capacity and better performance balance

Exclusive DRAM-HDM Cache with a Writeback SSD Backing Store

- The driver exposes a single up-to-1 TB virtual memory (limited by SSD)
 - DRAM <-> HDM: exclusive cache pair (no duplicates)
 - HDM <-> SSD: write-back strategy, not an inclusive cache

TRACE: Time-based Recency Access Classifier for Eviction

- Detects data temperature using PTE access bits over time
 - Classifies hot and cold pages without application changes
 - Background kernel thread periodically scans and updates metadata
- Evicts cold pages across memory tiers with precision
 - "DRAM to HDM" and "HDM to SSD"
 - Targets the coldest chunks based on temporal recency
- Achieves high efficiency with minimal overhead
 - Only ~1% memory for metadata & minor runtime disruption

Experiment Setup

Item	Description
CPU	Intel Xeon (Model 173), 144 cores (72 cores per socket × 2 sockets)
Memory	2 DDR5 RDIMM, 6400 MT/s, 32GB each (total bandwidth: 100GB/s)
NVMe-oC	PCIe Gen3 x8 (8GB/s), 16GB HDM + 64GB SSD
OS	Fedora Linux 40 (Workstation Edition)
kernel	6.8.5-301.fc40.x86_64

Memory Configurations

DRAM	64GB DRAM	Capacity: 64GB
DAX-tiering	16GB DRAM + 16GB HDM + 64GB SSD	Capacity: 64GB

Redis Performance & Performance-per-dollar (16 server instances, 64GB in total)

- Delivers near-DRAM performance at 50% lower memory cost
- Boosts performance-per-dollar by up to 2.3x
- Sustains performance as workload exceeds DRAM+HDM capacity

Redis Performance w/ and w/o TRACE

- Slight overhead at small DB sizes (≤15), with minor IOPS drop due to TRACE management
- As DB working set spans DRAM, HDM, and SSD, TRACE unlocks multi-tier cache benefits, boosting SET by ~17% and GET by ~9%

TRACE Performance using Synthetic Workload

- NVMe-oC with TRACE enabled improves the throughput by up to $1.33\times$ and averages $^{\sim}1.2\times$ across workloads
- TRACE consistently improves cache hit rate across all locality distributions

the Future of Memory and Storage

NVMe-oC: One Architecture, Many Configurations

- Host-managed caching enables configurable DRAM:SSD ratios
 - DRAM includes host DRAM and device DRAM (HDM)
- Flexible ratios optimize for workload needs
 - 1:2 for latency-sensitive applications such as inference
 - 1:4 for read-heavy applications like Redis
 - 1:8 for high-locality applications such as cache systems

Memory Type / Tier	Estimated \$ / GB	Typical Latency	Ideal Workload
DDR5/LPDDR5	\$4 ~ \$5	100ns	ultra-hot data
SSD	\$0.02 ~ \$0.05	60us	cold / backup data
NVMe-oC (1:2)	\$2.0 ~ \$2.6	Cache hit ≈ 250 ns Cache miss ≈ 60 μs	Latency-sensitive apps
NVMe-oC (1:4)	\$1.0 ~ \$1.3	Cache hit ≈ 250 ns Cache miss ≈ 60 µs	read-heavy DBs (e.g., Redis)
NVMe-oC (1:8)	\$0.52 ~ \$0.68	Cache hit ≈ 250 ns Cache miss ≈ 60 µs	high-locality caches

https://memory.net/memory-prices/

Host-defined Memory Architecture (1) – Interleaved DRAM-HDM Composite Cache

- Chunks are placed in a weighted round-robin pattern across
 - DRAM (low latency, high BW)
 - HDM (higher latency, moderate BW).
- Interleaving DRAM and HDM at allocation time delivers additive bandwidth and cheaper capacity, but at the cost of higher latency variance

Host-defined Memory Architecture (2) – Multi-Tier Composite Cache for Balanced Performance

- Simultaneously expands both memory bandwidth and capacity
 - Fully utilizes CXL full-duplex link: foreground reads target upper-tier HDM while background writes stream into lower-tier HDM
 - **Zero-copy HDM demotion**: address remapping between HDM tiers without physical data movement

Takeaway

- Cost-Effective Memory Scaling with NVMe-oC
 - Combines DRAM, HDM, and SSD into a unified memory space
 - Delivers near-DRAM performance at 50% lower memory cost
- Intelligent Hot/Cold Tiering with TRACE
 - Hot data stays in DRAM, cold data flows to HDM and SSD
 - Enables real-time hot/cold detection with only ~1% metadata overhead
- Flexible Host-defined Caching for Any Workload
 - Configurable DRAM:SSD ratios (1:2, 1:4, 1:8) per workload need
 - Leverages CXL full-duplex bandwidth and zero-copy HDM demotion
 - Adapts to bandwidth-sensitive or latency-sensitive applications across tiers

