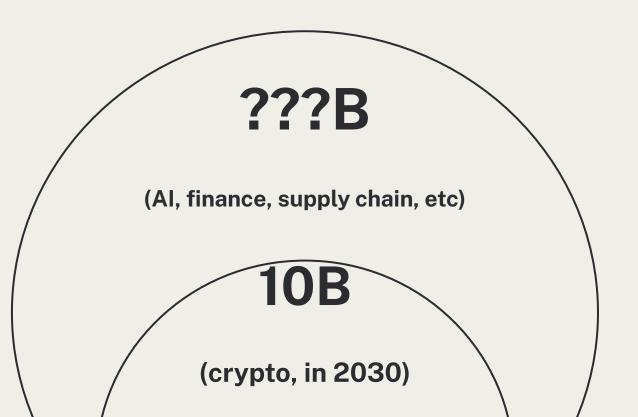
ZKPU

Make ZK ASIC Decentralized, Scalable and Open-Source

AGENDA

- Background
- Market
- Problem
- Solution
- Founders
- Proof of Concept

BACKGROUND-ZKP DEVELOPMENT


Timeline:

- Original concept of ZKP in 1980s,
- zk-SNARK(zero-knowledge Succinct Non-Interactive Argument of Knowledge): 2011
- SNARK became practical due to new algorithm/protocol invented: 2016 (Groth)
- Crypto boom, new software protocols are invented: PLONK, STARK, PLONKY2, HALO2,
 NOVA, etc.

Focus:

- Proof generation and verification.
- Fast generation, short proof, post quantum, integration, decentralization.
- Mostly driven by crypto teams now.

MARKET

Crypto

Ethereum L2 in 2030

- ~90 billion zk proofs
- 83,000 transactions per second

Next Big Thing: BTC ZK Rollup

ΑI

ZKML is being actively researched now.

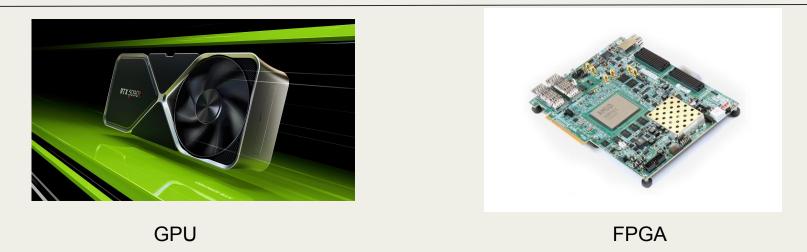
Others

Finance, Supply Chain, etc.

PROBLEM - ZKP Workloads Overwhelm CPUs

Demanding Workloads:

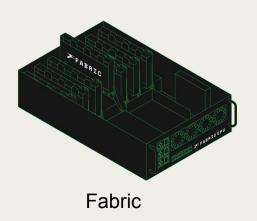
- MSMs: Require massive parallelism, slow on CPUs.
- NTTs: Data shuffling and bandwidth limits cause slowdowns.


CPU Challenges:

 General-purpose CPUs are too slow and lack the resources required for efficient ZKP proof generation.

Solution:

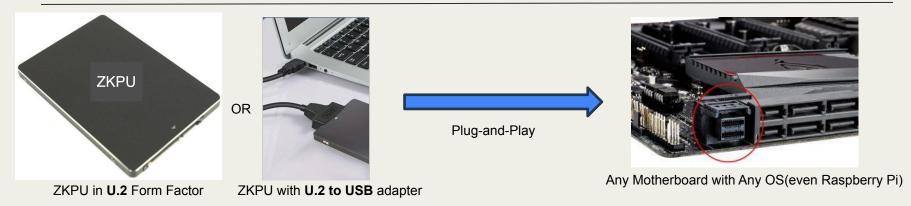
 Dedicated Co-Processors are essential to handle these workloads efficiently while maintaining decentralization.


PROBLEM - Early-Stage Solution

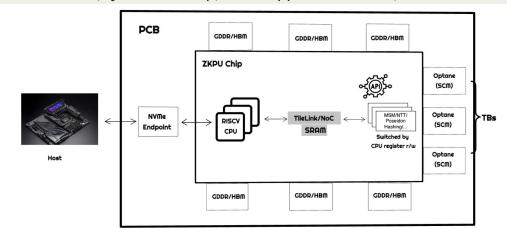
- Costly: High acquisition cost and TCO(Total Cost of Ownership) -> hard to scale efficiently.
- Latency(GPU): Not optimized for Crypto Algorithm -> Slow proof generation and resource-inefficiency
- Complexity(FPGA): Requires hardware programming -> complicated, centralized and unscalable

FPGA <<< ASIC!!!

PROBLEM – In-development ASIC

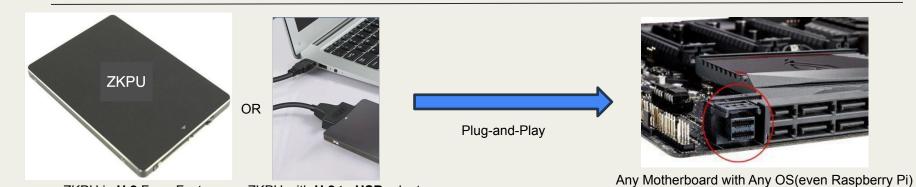


Cysic


Features: Proprietary Server Box

- **Costly**: High acquisition cost and TCO (Total Cost of Ownership) → Limits efficient scaling.
- **Centralized**: Complex deployment and expenses → Reliance on centralized operators & Censorship.
- Risky: Rigid design + evolving ZK protocols → Inflexible ASICs face high risks.

SOLUTION – ZKPU in Edge



• Feature: RISC-V SoC(System on Chip) with support of NVMe (Non-Volatile Memory express)

SOLUTION – ZKPU in Edge

ZKPU in U.2 Form Factor

- Feature: RISC-V SoC(System on Chip) with support of NVMe (Non-Volatile Memory express)
- Affordable: \$200~300 BoM(1/10 of GPU); easily scalable

ZKPU with **U.2 to USB** adapter

- Low TCO(Total Cost of Ownership): Low deployment cost and low power consumption(25 watt, 1/20 of GPU)
- Decentralized: Compatible with any OS supporting NVMe
- Configurability: on-chip RISC-V CPUs & eFPGA -> flexible Modular Arithmetic modules
- Low-latency: Optimized algorithms and data communication for high performance
- On-Chip Flash Storage: ZKVM On-Chip, No PCIe Loading/Unloading, Off-chain Data Interaction

SOLUTION – ZKPU in Datacenter

ZKPU in AIC Form Factor

ZKPU in a Datacenter Setup

- Data Center Ready: ZKPU + NVMe + NVMe-oF = Custom ASIC + DIZK = Proof-as-a-Service (PaaS).
- Integration: NVMe + Nvidia GPUDirect = P2P connect with GPU & SSDs
- Open-Source: Built on UC Berkeley's **Chipyard** project, fostering innovation through an open-source design.

Plug-and-Play

Proof of Concept

Demo: https://docs.open-proof.com/demo/nvme-msm

FPGA: XIlinx VCU118

CPU: RISC-V

System: Chipyard based

Clock: 100Mhz

Data Transport Protocol: standard NVMe

Tools: Python script calling nvme-cli

N	Our_MSM_100 MHz (s)	Our_MSM_250MH z (s) (expected)	CycloneMSM (AWS F1 FPGA 250MHz) (s)	gnark-crypto (AWS F1 4x 2.3GHz) (s)
20	1.396	0.546	0.559	3.192

Addition Resources

- Videos:
 - 1-minute overview video: https://www.youtube.com/watch?v=VUTBqpwyIAQ
 - **6-minute video** touching on more details: https://www.youtube.com/watch?v=qnRF5LgDOes
 - 33-minute deep dive video on technical details: https://www.youtube.com/watch?v=xDHMmRuL32w
- Contact us:
 - Twitter: https://x.com/OpenProof ZKP
 - Telegram ID: dingsen_2
 - Email: dingsen.shi@open-proof.com
- OpenProof Website: https://docs.open-proof.com/
- NVMe-MSM FPGA Demo: https://docs.open-proof.com/demo/nvme-msm