Asia Memory Markets Trends, Threats and Opportunities:

Sovereign Data Center & Chip Mandates Reshaping Global Tech

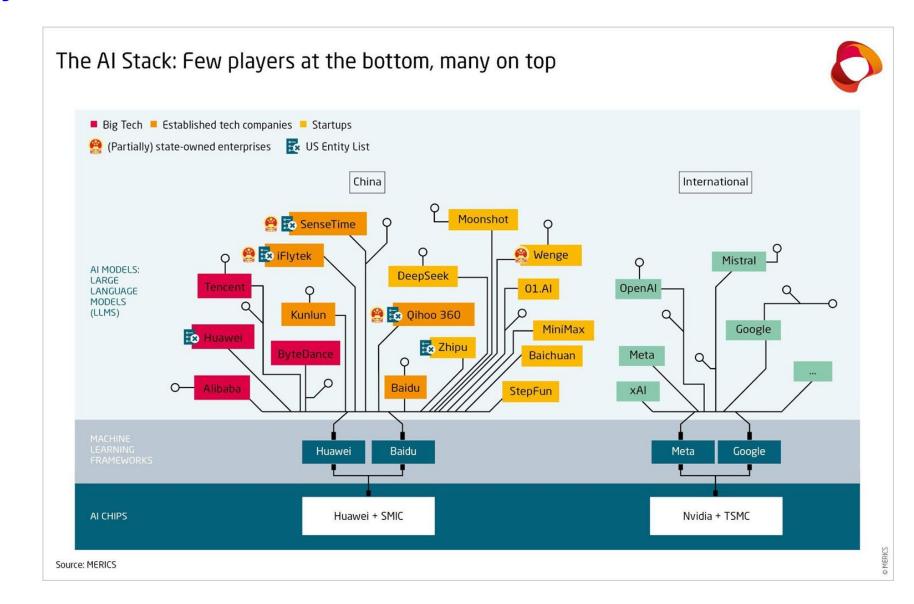
Nilesh Shah ZeroPoint Technologies

Global Wafer Fab capacity: 2022 - 2032

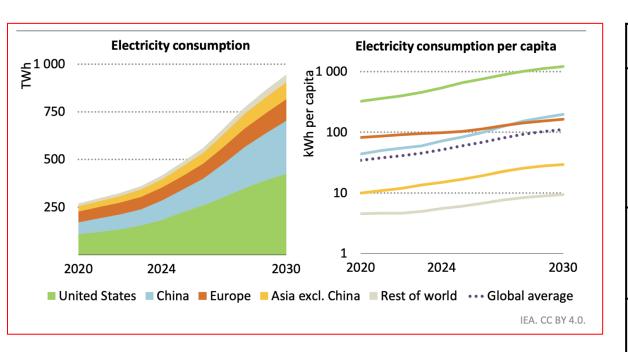
2022 3% 52% 20% 18% Korea, Taiwan, China continue **DRAM** 17% 57% 13% 2032F DRAM dominance China NAND share rise 2022 3% 30% 30% 26% 7% NAND 2032F 2% 32% 42% 5% Taiwan dominance leading edge 2022 31% 69% Logic <10 nm 2032F nodes 28% 6% 5% 9% 47% 8% 28% 13% 40% Logic 10-22 nm 6% 6% 2032F 20% 14% 6% 29% 19% 5% 30% 33% 9% Logic China dominates older nodes 28 nm+ 9% 25% 37% China^{1,3} Other² US Europe Japan Korea Taiwan

the Future of Memory and Storage

Made in China 2025 policy


Big Fund III (May 2024)

- \$47.5B Committed: Exceeds U.S.
 CHIPS Act funding.
- 15-Year Horizon: Long-term focus vs. previous 5-year cycles.
- Centralized
 Strategy: Directed capital for national semiconductor goals.


https://cetas.turing.ac.uk/publications/chinas-questsemiconductor-self-sufficiency

Al Stack: China v/s World

Sovereign Compute: Data Center Demand, Asian Chip Manufacturers

	China	South Korea
Inference	 Moore Threads (CUDA-alike GPU) Loongson (CPU, edge inference) 	 FuriosaAl (edge inference) Rebellions.ai (datacenter inference)
Training	• Biren (HBM-powered BR100 for LLM training)• HBM2 from CXMT (early)	NA
Memory/ Storage	• CXMT – DDR5, HBM2 (in development) • YMTC – NAND (Xtacking), 13% global share	• SK hynix – HBM3E, LPDDR5, enterprise SSDs • Samsung – HBM3, ZNS SSDs, CXL memory prototypes

US + China: 80% AI DC power consumption by 2030

Sovereign chip mandate

China: Memory (CXMT) & Storage (YMTC)

Sovereign
mandates
accelerating
Memory/Storage
self sufficiency

Category	CXMT (ChangXin Memory)	YMTC (Yangtze Memory)
Product Focus	DRAM (DDR4 → DDR5), HBM2/3/3E	3D NAND (294-layer, XStacking)
Production Scale	280K–300K wafers/month projected by end-2025	~250K WOPM (wafer-on-product); uses ~500K raw wafers/month
Technology Node	16nm (1z); ~3–4 years behind industry leaders	Within ~1–2 years of leaders (Samsung, Micron)
HBM Status	HBM2 in production (late 2024); HBM3 planned for 2026	Not active in HBM; focused on advanced NAND
Market Share	0% (2020) → 5% (2023) → 10–12% projected (2025)	13% global NAND share (2024–2025)
Strategic Role	Potential DRAM supplier for sovereign compute (e.g., Biren)	Silent expansion into high-density Al storage; NAND alternative to Western flash, HBF leadership
Sanctions Exposure	Uses 16nm tech (just above U.S. export threshold)	On U.S. Entity List; vulnerable to export tightening

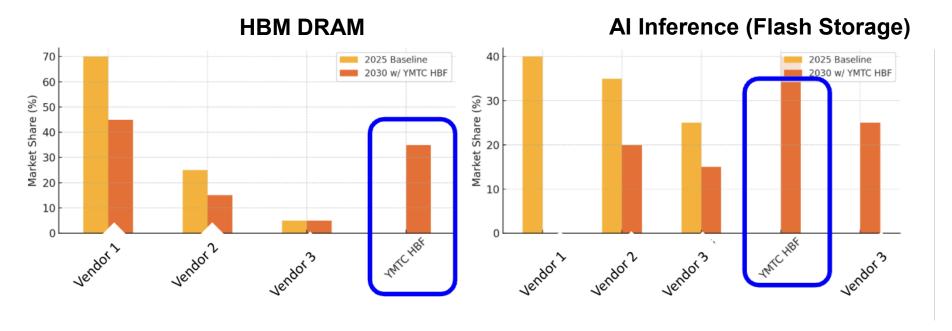
Enterprise Gen Al: Trends

Inference spend dominates

Inference: Memory Bound

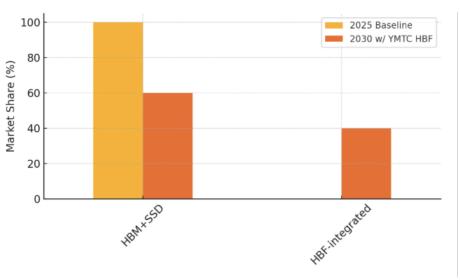
RAG use growing

Source: https://menlovc.com/2023-the-state-of-generative-ai-in-the-enterprise-report/


LLM Inference Unveiled: Survey and Roofline Model Insights

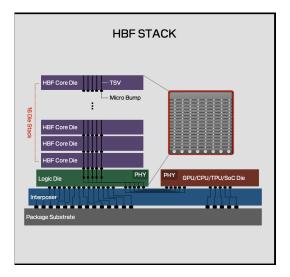
Threat Modeling: Hypothetical Market Share Impact: YMTC Launches HBF by 2030

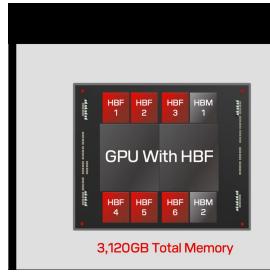

Scenario: YMTC/CXMT co-develop HBF equivalent technology


DRAM + Flash share of revenue erosion, design win loss

Flash Share of Revenue

Al Accelerator Integration Base

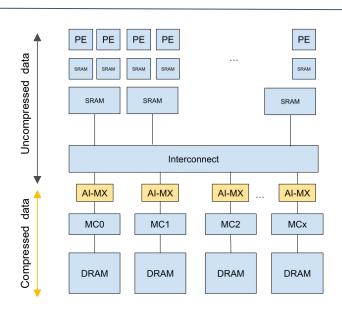


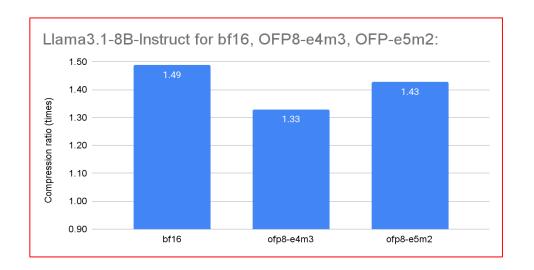

Opportunity: New Technology

Source: https://investor.sandisk.com/static-files/79481580-ada2-4e08-bdeb-4b440d08f4ab

High Bandwidth Flash (HBF), targeting 8× HBM capacity for Al inference at similar cost, Leverages BiCS and wafer bonding 8-16X

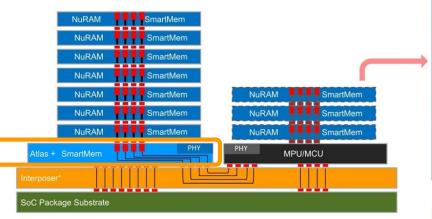
Combine HBF + inline (de)compression maintain competitiveness factor of 16-32X



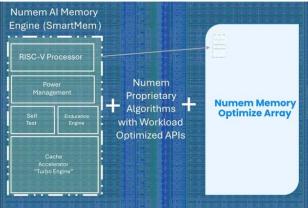


Lossless HW accelerated AI Model & KV Cache (de)compression by 1.5-2X

Source: https://www.zeropoint-tech.com/products/hbm-memory-expansion



1.5X Model compression


Opportunity: Managed MRAM "SmartMem" technology

Gen 1 12nm: 2-6TB/s, 3-9GB/stack

Gen 2 5nm: 4-12TB/s , 8-16GB/stack

Numem SoC example (I/F: UCIe, HBM, LPDDR, etc.)

Numem Each Chiplet

Three Key Ingredients

- 1. Al Memory Engine
- 2. Numem Algorithms
- 3. Numem Array Design

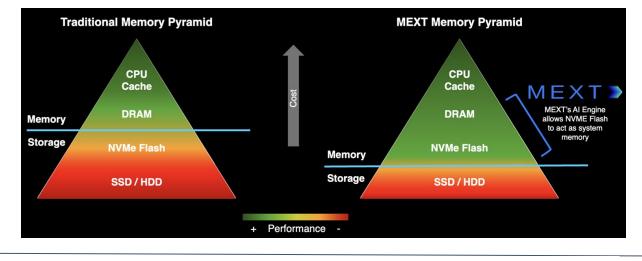
Combine MRAM + (de)compression to gain 5X advantage

Al Memory Engine to manage HBF performance

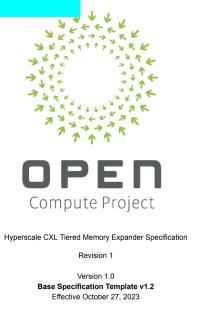
the Future of Memory and Storage

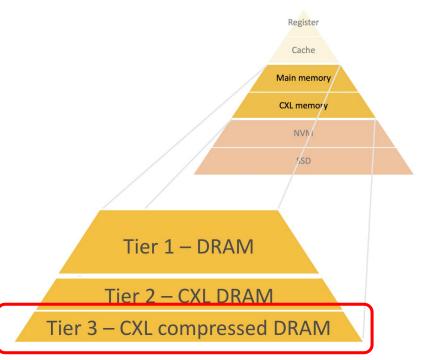
HBF Core Die
PHY
PHY GPU/CPU/TPU/SoC Die
Interposer

HBF STACK


Opportunity: New Technology

Enterprise Solution: Al Powered Predictive Memory Tiering Flash + DRAM


Solve specific Hyperscale & Enterprise Memory challenges


OCP Hyperscale solution: Compressed CXL Tiered Memory Tier

Source: https://www.mext.ai/blog/memory-finally-goes-multi-tier

Summary

Action

Sovereign computing is not a trend — it's a restructuring of global compute economics

Asia leads in power availability, chip fab scaling, memory innovation.

US & EU must act now: invest in NAND/HBM/CXL/HBF ecosystems or become

dependent

Deep tech collaboration required: Memory, storage, IP, software to effectively address threats

Next-gen Al infrastructure is not just compute-bound

Required