Flash-Powered Mixture of Language Models Inference on Edge Devices

[Confidential]

08.05.2025

VISHWAS SAXENA, SENIOR TECHNOLOGIST Deepankar Kansal, senior engineer

CONTENTS

 (\rightarrow)

01

Challenges in LLM Inference on Edge

03

LLM loading from NVMe device

05

Enhancing Responses Through Reasoning Tokens

07

Summary

02

Architecture Leveraging Flash

04

Interleaving Language Models

06

Results & Memory Footprint

80

Upcoming Explorations

Challenges in LLM Inference on Edge

Model Size & Complexity

 State-of-the-art LLMs have billions of parameters and require extensive memory and compute power only available on high-end GPUs.

Resource Constraints on Edge Devices

• Edge devices have limited GPU VRAM (< 16GB) and computing power, making local LLM inference infeasible without accuracy-reducing compression.

Limits of Multi-Model Deployment on Edge

• Multi-model setups demand far more resources than edge devices can provide.

Expensive GPU Hardware

Tier	GPU VRAM Range	Approx. Price (USD)
Entry/Mid	8 – 12GB	\$700 - \$1200
Mid/High	12 – 16GB	\$1200 - \$1600
Premium	16GB+	\$2500+

Increasing GPU VRAM for inference on the edge devices is economically infeasible

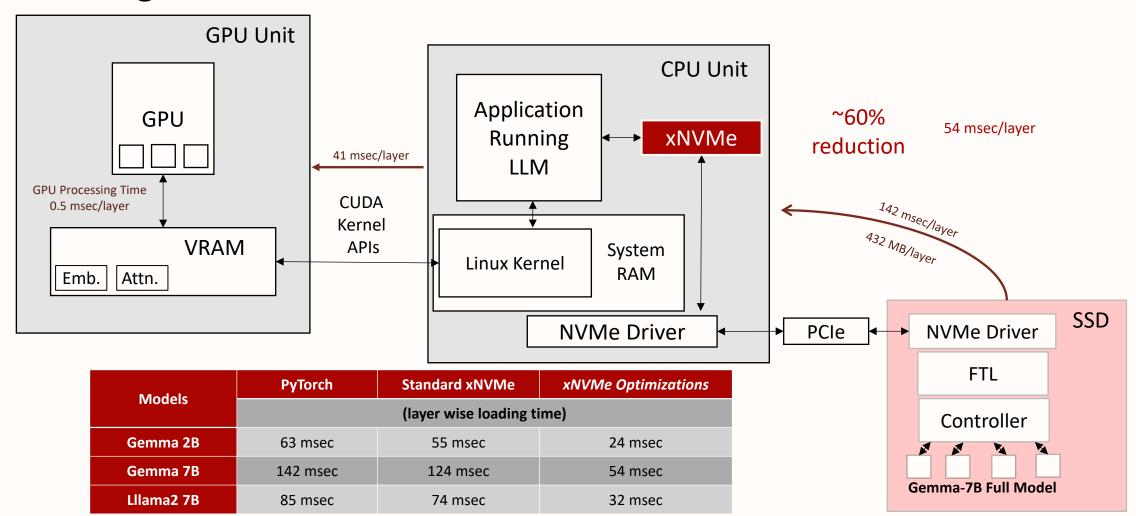
Architecture Leveraging Flash

Can we stream parameters from flash memory while achieving acceptable inference?

Answer: Yes, and it opens up important opportunities for flash memory.

- * Row Column Bundling: Clustering the up and down projection neurons. This will help in reducing number of reads from the SSD.
- xNVMe Optimizations: SSD read I/O latency reduced by approximate 60%.
- Parallel Reads: Read from SSD to CPU (one layer ahead) and CPU to GPU in parallel.
- **Streaming Approach**: A portion of MLP layers stays resident on the GPU while subsequent layers are loaded one at a time.
- **Reside Embeddings on CPU**: This approach helps reduce GPU VRAM usage but may increase latency for certain models, depending on their architecture.

LLM loading from NVMe device



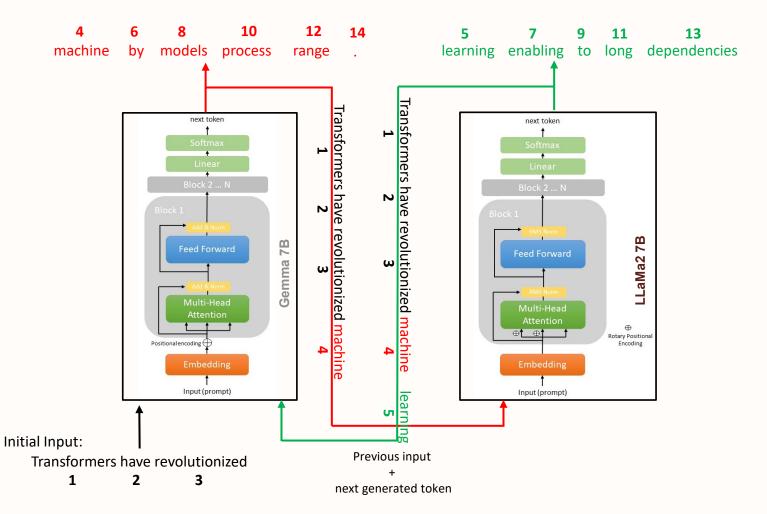
Interleaving Language Models

Inference from combination of models on a single GPU.

- Enhances response quality by incorporating multiple expert perspectives.
- Encourages diversity of thought, increasing the reliability of the final input.
- Optimized setup to get the best performance from the GPU.

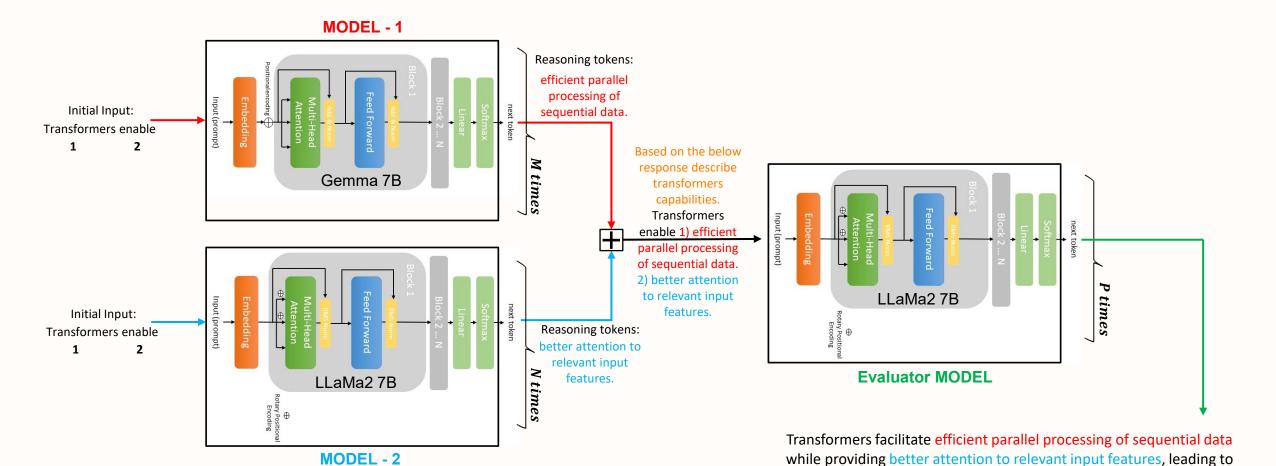
Final output:

Transformers have revolutionized machine learning by enabling models to process long range dependencies.



[Confidential]

Enhancing Responses Through Reasoning Tokens

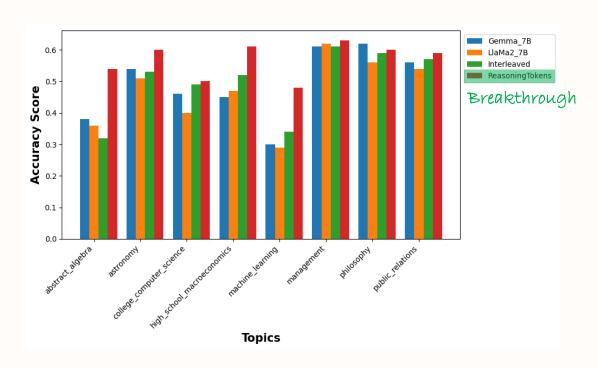


202E CANDICK CODDODA

improved performance in various natural language processing tasks.

[Confidential]

Results



Accuracy scores of inferencing techniques for different topics from MMLU dataset

Memory footprint

Model	Traditional Method	<u>SHARAG</u>
Gemma 7B	17 GB	<u>5.1 GB</u>
Llama2 7B	15.5 GB	<u>5.8 GB</u>
Gemma 7B + Llama2 7B (Interleaved/Reasoning)	32.5 GB	<u>11 GB</u>

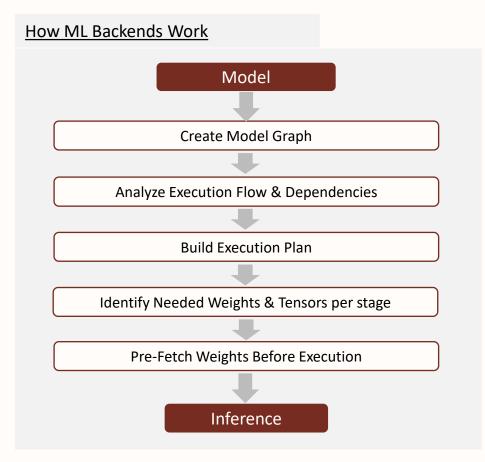
Minimum memory requirements of SHARAG over traditional inference methods

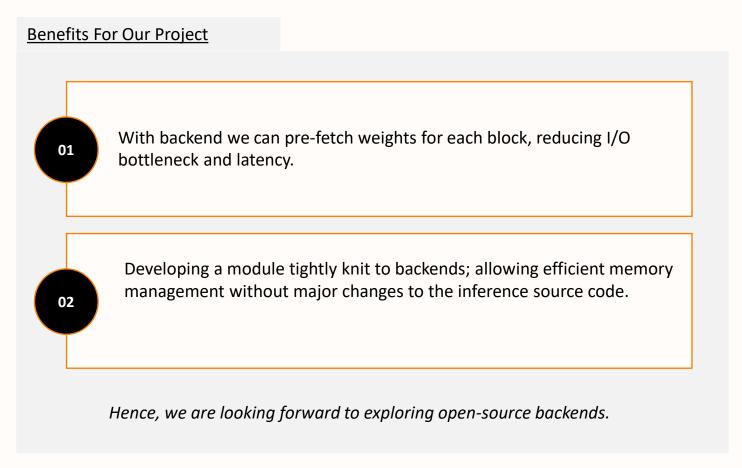
Summary

- Efficient Model Loading: Leveraging flash memory and an optimized xNVMe module enables direct streaming of language model weights to GPU VRAM, supporting inference on memory-constrained devices.
- Maximized GPU Utilization: The streaming technique maximizes GPU VRAM utilization by consistently loading the GPU to full capacity, ensuring optimal performance.
- Advanced Inference Techniques: Interleaving and Reasoning Tokens outperform traditional single-model inferencing.
- **Enhanced Edge Performance:** Dynamic loading from flash and inferencing techniques, when combined, provide a way to achieve improved LLM results on edge devices.

Upcoming Explorations – Optimization with Different Backends

Optimize backends provides specialized tools that compile and optimize how models run by planning data use ahead of time, making inference faster and smoother.





[Confidential] "START" "REPEAT" "1988/2025"

THANKS!

