
Towards a Flexible, Efficient, and Resilient AI Training on

AMD GPUs with DeepSpeed Universal Checkpointing

Pratik Mishra

AMD

August 6, 2025

FMS: Future of Memory and Storage 2025

mailto:Pratik.Mishra@amd.com?subject=CXL-SSD%20Case%20Study

2 |

Agenda

Disclaimer: Please refer to the Copyrights and Disclaimer in the presentation. We have tried to cite most relevant sources.. We (the authors and associated organization) owe no responsibility

towards the content’s accuracy or claims, and they should be viewed as personal viewpoints/opinions to cater open discussions.

• AI Systems Glossary 101s

• Infrastructure, Reliability, and Foundation Model Training

• Fault-Tolerance Tax

• Universal Checkpointing (UCP) : Collaboration with UIUC (Prof. Minjia Zhang)

• Conclusion

• Copyrights and Disclaimer

3 |

AI Training Infra Reliability 101: Metrics
SDC’24

• Training Goodput = Actual progress made / total time

• Effective Training Time Ratio (ETTR) = actual training time / total time

• Model FLOPs Utilization (MFU) = FLOPs a model utilizes/ peak HW FLOPs available.

• Mean Time Between Failures (MTBF) = total time / # of failures.

Achieving high training goodput and maximizing model FLOPs utilization to improve the

Effective Training Time Ratio remains a significant and ongoing challenge.

Failures and Training Efficiency?

https://www.youtube.com/watch?v=ucDsyFKOdYI

4 |

Reliability and Training Efficiency @scale

of accelerators

M
e
a
n

 T
im

e
 B

e
tw

e
e
n

 F
a
il

u
re

 (
M

T
B

F
)

lo
g

-s
c

a
le

 (
n

o
rm

a
li

z
e

d
 m

in
s

)

node rack-scale cluster-scale data-center scale

(<24 hrs) (<30 mins) (<5 mins)

Projections of AI training systems@scale failures not specific to any accelerator.

With growing scale of AI deployments, the MTBF decreases significantly.

Therefore, resiliency is the core for achieving Training efficiency and increasing Training Goodput

and ETTR.

𝑀𝑇𝐵𝐹 ∝ 1/(𝑛𝑜. 𝑜𝑓 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑜𝑟𝑠)

Across millions and billions of components across the SW & HW stacks in the data-center hierarchy.

(<1-3mon)(~3-6mon)(yrs)

5 |

Fault Tolerance, Training Efficiency and Checkpointing

• Fault-tolerance, resiliency, and recovery are of utmost importance for

Training Efficiency metrics (discussed earlier).

• Storage community’s poster AI use-case: Checkpointing.

• Critical fault-tolerance mechanism for periodically persisting training

snapshots to enable recovery via rollbacks in the event of failure.
• Also: Hardware refresh, Resource re-balancing, post-training, concurrent evaluation, increase accuracy, etc.

With scale and every-lowering MTBFs, the checkpointing frequency, size, and complexity increases

significantly; imposing heavy data-center tax (GPU underutilization).

6 |

Fault Tolerance Tax: Checkpointing

Tprogress_1 Tprogress_nTchkpt_save_1 Tchkpt_save_n Titr_lost Trecovery Tckpt_load

FToverhead = Tchkpt_save + Titr_lost + Trecovery + Tchkpt_load

ETTR = (1-FToverhead)

• Achieving optimal ETTR @ data-center scale is “real” challenge.

• Without optimization, systems may spend more time managing failures than actual training.

• Trade-off: Excessive checkpoints increases data-center tax & infrequent increases risks (cost).

• Data-center tax: compute, network, storage.

Therefore, to achieve optimal ETTR (+goodput) it is quintessential for reliability mechanisms to strike the

balance of performance, scalability, and cost-effectiveness.

7 |

Optimizations : Checkpointing

Tchkpt_save

Tchkpt_load

Efficient fault-tolerant checkpointing at scale requires GPU–storage path optimizations

and topology-aware strategies to sustain robust infrastructure and high MFU.

• Serialization + Persistence → {GPU states + CPU states + metadata}

• Synchronous chkpt: simple but introduces significant training stalls.

• Asynchronous checkpoints (PyTorch DCP) reduces persistence latency (lesser

ETTR) by alleviating main GPU thread from critical IO path.

• Needs optimizations to reduce@scale overheads (BW, //sm, etc.)

• Loading checkpoint is mission-critical.

• Loading + Deserialization: impacts training resumption (ETTR, MFU).

• Also, post-training and inference.

• Concurrent loading (size, magnitude) can destabilize infrastructure.

• GPU node BW, Frontend network BW, storage throughput, cluster topology,

reconfiguration, etc.

8 |

Recovery with Flexibility + Elasticity?

Trecovery

• Resource rebalancing (GPU shape change) is common [1,2].

• Training Resumption : reconfiguration parallelism.

• Post-Training : lower requirement for SFT, RL.

• Inference : much lower with diff. config + data-set.

• Existing distributed training frameworks provide highly

limited support for reconfiguring //sm.

• Mostly inefficient: offline, hand-written scripts, human

intervention.

[1] Bytedance 2024

[2] DeepSpeed UCP 2024

Distributed checkpoints are tightly coupled to initial parallelism and HW configuration, resulting in GPU idle time

(recovery time) during re-sharding limiting adaptability to resource elasticity.

+ Tchkpt_load

9 |

Supporting flexible, efficient and resilient training on

AMD GPUs with DeepSpeed Universal Checkpointing

Collaboration: Prof. Minjia Zhang (UIUC), co-creator of DeepSpeed UCP; and

PhD students (Jiankun Wang and Xinyu Lian)

DeepSpeed UCP

 [1] Github: https://github.com/deepspeedai/DeepSpeed/blob/master/blogs/deepspeed-ucp/README.md

 [2] Paper: Lian, Xinyu, et al. "Universal checkpointing: Efficient and flexible checkpointing for large scale distributed training." arXiv preprint arXiv:2406.18820 (2024). Accepted in USENIX ATC’25.

https://github.com/deepspeedai/
https://arxiv.org/abs/2406.18820

10 |

UCP : Universal Checkpointing

• Developed as a part of DeepSpeed.

• Support for commercial-scale models (BLOOM, Megatron GPT,

Llama, Microsoft Phi)

• Comprehensive, Flexible, and automated.

• Checkpoint re-sharding along most training parallelism techniques

• Combinations - Zero-DP, PP, TP, DP, SP.

• Defines UCP language to support checkpoints from various

frameworks (for e.g. DCP)

• Pattern matching: runtime-sharding information.

DeepSpeed UCP 2024

https://github.com/deepspeedai/DeepSpeed

11 |

UCP : 100K birds-eye view

DeepSpeed UCP 2024

From source distributed checkpoints re-
create per-parameter consolidated view/
“atomic checkpoints.”

Stage 1: Decouple parallelism Stage 2: Load and Convert

Based on UCP language pattern-matching; re-
shard from atomic checkpoints to target GPU
configurations.

“atomic checkpoints” per parameter:
Weight, Momentum, Variance.

12 |

UCP: Accuracy

UCP enables failure recovery with resource rebalancing (GPU shape, parallelism)

without compromising training accuracy.

Recovery from checkpoint needs to be accurate, fast and

agnostic to changing parallelism patterns.

Blue denotes the actual training run loss, and orange denotes

the loss after checkpoint recovery with changing parallelism.

Initial Configuration (blue) : 8 MI210 nodes (32 GPUs) with TP=4, PP=4, DP=2.

Resume Training (orange) : 4 MI210 nodes (16 GPUs) with TP=2, PP=8, DP=1.

Failure

injection

Experiments over GPU clusters and remote high-performance NVMe storage system.

13 |

UCP: Under the Hood Analysis
Apples vs Oranges comparison:

DCP doesn’t support
reconfiguration.

• UCP has to do extra work compared to DCP for

reconfiguration:

1) Decouple parallelism 2) Convert and Load to target

GPU shapes.

Access pattern – Decouple parallelism

torch.load(),

torch.save()

E
x
tr

a
c
t

M
e
rg

e

UCP IO volume > 4x DCP due to reconfiguration.

• GPU – remote storage BW underutilization:

• Serialization and Deseralization

• Opportunity to exploit In-node parallelism.

• High GPU node host-resource consumption:

• Large # of temporary intermediate files.

• Time, size and phase-varying access pattern.

UCP needs to perform extra work for elastic recovery.

However, it needs adaptive optimizations to reduce recovery time cost-effectively.

Trecovery

Tchkpt_load

14 |

UCP: Architectural Re-design

UCP (optimized) ~ 1.4x-2x faster
compared to vanilla-UCP

Trecovery ~2x faster

Tchkpt_load ~1.5x faster

Infrastructure-aware optimizations + Metadata-aware optimizations+ Inter/intra-node optimizations

 • Dynamic, adaptive GPU-node host-resource

(memory, compute) + workload-aware.

• Multi-node + async Hierarchical parallelism.

• Storage characteristic - throughput, backend

(object/file), scalability analysis, etc.

• Cluster and GPU-node topology (network BW).

• Deserialization chkpt (.pt) file structure-aware.

• mmap + offset-based dynamic loading :

Elimination of temporary file creation.

UCP optimizations across the GPU–storage data path significantly reduce recovery

and resumption time (+cost), improving training goodput and lowering ETTR.

Reduction in GPU-node host resource consumption,

IO traffic, etc.

Increase in GPU-Storage BW utilization.

Resulting in lower latency.

IO traffic 2x reduction.

15 |

Conclusion

• Trend is clear:

• With scale and size of AI deployments, failures will be inevitable, while MTBF will keep lowering.

• Robust, scalable, and cost-effective fault-tolerance recovery and resiliency mechanisms is the core to

achieve optimal ETTR and Training goodput.

• Resource rebalanced recovery is becoming common in the AI lifecycle.

• Therefore, AI Training Fault-tolerance needs to be flexible, resilient, elastic and adaptable.

• UCP (Universal Checkpointing) seems to be promising direction for automated, flexible, resilient, and

elastic AI Training. However, it needs full-stack scalable optimizations.

Therefore, to achieve optimal ETTR (+goodput) it is quintessential for reliability and recovery mechanisms

to strike the balance of performance, scalability, and cost-effectiveness to harness the full potential of

GPU-accelerated AI computing.

16 |

COPYRIGHT AND DISCLAIMER

©2025 Advanced Micro Devices, Inc. All rights reserved.

AMD, the AMD Arrow logo and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this publication are for
identification purposes only and may be trademarks of their respective companies.

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The
information contained herein is subject to change and may be rendered inaccurate releases, for many reasons, including but not limited to product and roadmap
changes, component and motherboard version changes, new model and/or product differences between differing manufacturers, software changes, BIOS
flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD
assumes no obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes
from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED 'AS IS." AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND
ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD SPECIFICALLY
DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT
WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM
THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

	Slide 1: Towards a Flexible, Efficient, and Resilient AI Training on AMD GPUs with DeepSpeed Universal Checkpointing
	Slide 2: Agenda
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9: Supporting flexible, efficient and resilient training on AMD GPUs with DeepSpeed Universal Checkpointing
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

