Space Age Memory For the Modern Space Age

Armijo Innovations FMS 2025

Why Do We Care?

Market projections for low earth orbit satellites \$500 bn GS Forecast

Low Earth Orbit Satellites Deep Satellites Space Telescopes Moon Landers Mars Rovers and Drones Interplanetary Vehicles

Number of Space Exploration Missions Launched and to be Launched by Application (government and commercial combined)

Current Space Tech

Satellites

Have Little Compute Power

Have Limited Memory

Satellites

- Have Little Compute Power
- Have Limited Memory
- Are Just Data Relays

- Satellites Need To Analyze Data Where It's Collected
- Exploration Vehicles Need More Autonomy

- Satellites Need To Analyze Data Where It's Collected
- Exploration Vehicles Need More Autonomy
- Now: Need More Compute, Memory, Storage
- Future: Data Centers In Space!

Why Not COTS?

Let's Talk About Memory... Starting On The Earth

Let's Talk About Radiation...Misconceptions

Misconceptions #1: Radiation Protection Comes From The Atmosphere

Misconceptions #2: Shielding Is the Best Protection Against Radiation

The "Too Simplistic" Lattice View of Materials

The "Too Simplistic" Lattice View of Materials

- Actually, 99.99999999% of volume is empty space!
- Required shield thickness adds too much weight

The "Too Simplistic" Lattice View of Materials

A radiation particle will most likely disturb the electron cloud between nuclei...

Misconceptions #3: Radiation Always Destroys Electronics

Single Event Effects (SEE) On DRAM/SRAM

Effect	Remedy
Isolated Bit-Flip	ECC, Detect and Reset

Single Event Effects (SEE) On DRAM/SRAM

Effect	Remedy
Isolated Bit-Flip	ECC, Detect and Reset
Corrupted Ranges	App Fault & Reset, Scrub Memory

Single Event Effects (SEE) On DRAM/SRAM

Effect	Remedy
Isolated Bit-Flip	ECC, Detect and Reset
Corrupted Ranges	App Fault & Reset, Scrub Memory
Short-Circuit	Detect & Reset ASAP

Misconceptions #4: Just "Turn It Off And Turn It On Again"

Total Ionizing Dose (TID) in NAND Flash

Total Ionizing Dose (TID) in NAND Flash

But Advanced Micro-Electronics Is Too Expensive, Right?

Emerging NVM Market

Emerging NVM Market

Magneto-Resistive RAM (MRAM)

DRAM depends on +/-charge

Magneto-Resistive RAM (MRAM)

Lots of PN Junctions

MgO

DRAM depends on +/-charge

MRAM uses magnetism!

MRAM Radiation Tolerance

	MTJ MRAM	ST-MRAM1	NOR Flash	NAND Flash	FRAM	P/CRAM	Units
Density ²	16 Mb	1000	1,000	128,000	4	512	Mb
Access Time	35	<10	25	20	55	16	ns
Standby Current	<1	<1	<1	<1	<1	<1	mA
Read Current	30	15	20	25	<10	15	mA
Write Current	30	15	50	25	<10	20	mA
Endurance	Infinite	Infinite	100k	0.5-10k	1014	106	P/E Cycles
Retention	>20	>20	>10	>10	>10	>10	Yrs @ 55°C
Cell Size	10	<4	6	5	10	6	F ²
Cost/Mb	1.5	?	0.01	0.0002	10	0.05	USD
SEU Immune	Yes	Yes	No	No	No	Yes	n/a
SEL Immune	Yes	Yes	No	No	No	Yes	n/a
TID	>1000	>1000	<100	<100	<100	>10003	krad (Si)

Memristor Resistive RAM (ReRAM)

memristor based storage of bit

ReRAM Radiation Tolerances

Phase Change RAM (PCRAM)

resistive based storage of bit

PCRAM Radiation Tolerance

	MTJ MRAM	ST-MRAM1	NOR Flash	NAND Flash	FRAM	P/CRAM	Units
Density ²	16 Mb	1000	1,000	128,000	4	512	Mb
Access Time	35	<10	25	20	55	16	ns
Standby Current	<1	<1	<1	<1	<1	<1	mA
Read Current	30	15	20	25	<10	15	mA
Write Current	30	15	50	25	<10	20	mA
Endurance	Infinite	Infinite	100k	0.5-10k	1014	106	P/E Cycles
Retention	>20	>20	>10	>10	>10	>10	Yrs @ 55°C
Cell Size	10	<4	6	5	10	6	F ²
Cost/Mb	1.5	?	0.01	0.0002	10	0.05	USD
SEU Immune	Yes	Yes	No	No	No	Yes	n/a
SEL Immune	Yes	Yes	No	No	No	Yes	n/a
TID	>1000	>1000	<100	<100	<100	>10003	krad (Si)

Novel Memory Is Also Driving Novel Compute

Beyond Von-Neumann...

Neuromorphic

Compute-In-SRAM

Promising Low Power Alternatives For Space Computing...

Beyond Von-Neumann...

Neuromorphic

Compute-In-SRAM

Who Will Be Radiation Tolerant First?

Small Language Models (Gemma3N)

Standard execution

Parameters loaded: 5.44B

Text parameters: 1.91B

Vision parameters: 0.3B

Audio parameters: 0.68B

Per-Layer Embedding parameters: 2.55B

with skipped parameters & cached PLE

Parameters loaded: 1.91B

Text parameters: 1.91B

Vision parameters: 0.3B

Audio parameters: 0.68B

Per-Layer Embedding parameters: 2.55B

PLE data cached to fast storage

Small Language Models (Gemma3N)

Standard execution

Parameters loaded: 5.44B

Text parameters: 1.91B

Vision parameters: 0.3B

Audio parameters: 0.68B

Per-Layer Embedding parameters: 2.55B

with skipped parameters & cached PLE

Parameters loaded: 1.91B

Text parameters: 1.91B

Vision parameters: 0.3B

Audio parameters: 0.68B

Per-Layer Embedding parameters: 2.55B

PLE data cached to fast storage

Mission Autonomy in Remote Vehicles for Independent Science Surveillance