System Test Results with NVMe-over-CXL (NVMe-oC) Memory Mode

San Chang and Bernard Shung Wolley Inc.

Memory Is Not Scaling Fast Enough

- DRAM bandwidth grows slowly; HBM capacity gains are incremental
- Emerging workloads such as AI demand memory systems far beyond today's limits

What is NVMe-over-CXL (NVMe-oC)?

"Combines DRAM and NAND into a unified and CXL-attached memory module"

NVMe-oC Memory Mode

- Memory Access (load/store) will either fall into either DRAM or HDM
- Hierarchical Caching with Unified Address Space
 - DRAM <-> HDM: exclusive cache pair (no duplicates, only one valid copy)
 - HDM <-> SSD: write-back strategy

(powered by DAX-tiering)

Unified Memory Address Space (up to SSD capacity)

DRAM: fast, low-latency

HDM: medium-latency

SSD: high-latency, persistent

Experiment Setup & Benchmark

Item	Description	
CPU	Intel Xeon (Model 173), 144 cores (72 cores per socket \times 2 sockets)	
Memory	2 DDR5 RDIMM, 6400 MT/s, 32GB each (total bandwidth: 100GB/s)	
NVMe-oC	PCIe Gen3 x8 (8GB/s), 16GB HDM + 64GB SSD	
OS	Fedora Linux 40 (Workstation Edition)	
kernel	6.8.5-301.fc40.x86_64	

NVMe-oC Memory Mode Configurations

DAX-tiering	16GB DRAM + 16GB HDM + 64GB SSD	Capacity	v. 6AGR
DAX-tiering	1000 DKAIVI + 1000 HDIVI + 0400 33D	Cupacity	y. 04GD

Capacity: 64GB

Benchmark Suite	Domain	Workload Style
SPEC 2017	CPU & memory compute	Single/multi-core integer/FP jobs
multichase/multiload	Memory subsystem	STREAM-like copy/compute/write microkernel with NT stores
XSBench	Scientific computing / HPC	Irregular memory access patterns
YCSB	Cloud NoSQL / key-value stores	Configurable DB access workloads

SPEC 2017 – DRAM vs. NVMe-oC Memory

• NVMe-oC achieves near-DRAM performance with average CPU stall of $^{\sim}1.08$ (vs. DDR5: 1.0, CMM-H: $^{\sim}1.7$ based on Samsung paper), delivering lower stall time and outperforming CMM-H

multichase/multiload – DRAM vs. NVMe-oC Memory

Able to provide near-DRAM performance when the working set fits within DRAM + HDM

Fits in DRAM + HDM

XSBench (DRAM vs. NVMe-oC DAX-tiering)

• Our NVMe-oC with DAX-tiering maintains near-DRAM performance up to workload I, while CMM-H, without host DRAM support, slows down by $1.58\times$ to $5.56\times$ as the memory footprint grows from 80 MB to 40 GB

YCSB Performance (DDR5 vs. NVMe-oC DAX-Tiering)

- Workload A (Update Heavy, 50% read / 50% update)
- Workload B (Read Heavy, 95% read / 5% update)
- Workload C (Read Only, 100% read)
- Workload D (Read-Modify-Write, 95% read / 5% insert)
- Workload E (Scan Heavy, 95% scan / 5% insert)
- Workload F (Read-Modify-Write, 50% read / 50% RMW)
- DAX-tiering delivers 83% and 65% of DDR5 performance under small and large memory footprints respectively, while costing less than half of DDR5. This results in performance-per-dollar gains of 67% (small footprint) and 30% (large footprint)
 - Small memory footprint workloads (fits in DRAM + HDM) show an average of 1.2× slowdown
 - Large memory footprint workloads (spill over to SSD) show an average of 1.54× slowdown

YCSB Performance Projection from FPGA to ASIC

- Workload A (Update Heavy, 50% read / 50% update)
- Workload B (Read Heavy, 95% read / 5% update)
- Workload C (Read Only, 100% read)
- Workload D (Read-Modify-Write, 95% read / 5% insert)
- Workload E (Scan Heavy, 95% scan / 5% insert)
- Workload F (Read-Modify-Write, 50% read / 50% RMW)
- With ASIC, DAX-tiering delivers 97% (vs. 83%) and 74% (vs. 65%) of DDR5 performance under small and large footprints, at less than half the cost. This leads to the performance-per-dollar gains of 94% (small footprint) and 48% (large footprint)

Performance Comparison (NVMe-oC vs. CMM-H)

- NVMe-oC (with 16GB DDR4-2000)
 - (SPEC CPU2017) NVMe-oC, which combines host DRAM and device DRAM as cache, shows an average 8.4% slowdown compared to DDR5-L
 - (XSBench) Performance degrades by $1.0 \times$ to $6.5 \times$ as the memory footprint increases from 80 MB to 40 GB
- CMM-H (with 16GB DDR4-2666)
 - (SPEC CPU2017) shows an average 70% performance degradation compared to DDR5-L (local DRAM)
 - (XSBench) Performance degrades by 1.58× to 5.56× as the memory footprint increases from 80 MB to 40 GB

Zeng, Jianping, et al. "Performance Characterizations and Usage Guidelines of Samsung CXL Memory Module Hybrid Prototype." *arXiv preprint arXiv:2503.22017* (2025).

Feature Comparison (NVMe-oC vs. CMM-H)

	СММ-Н	NVMe-oC
Host Interface	PCIe Gen5x8	PCIe Gen5x8
Media	DRAM + SSD	DRAM + SSD
Memory Mode Capacity	Up to SSD total capacity	Up to SSD total capacity
Memory Mode Namespace	Single	Multiple (user configurable)
HDM Management in Memory Mode	Device Cache Controller	Host CPU
Dual Mode (Memory/Storage) Online	NA	Support <a>
Insert Application Intelligence	Limited	Support <a>
Direct SSD Data to Host DRAM (Hot Data)	NA	Support <a>
Dual-cache (Host DRAM + Device DRAM)	NA	Support <a>
Data Prefetching	Device Cache Controller	Support <a>
Hot/Cold Data Detection	Device Cache Controller	Driver (TRACE)
Cache Policy	8-way, 4KB management, LRU, MRU (HW implementation)	N-way, M KB management, LRU, MRU, etc., (software defined)

Takeaways

- NVMe-oC memory mode enables cost-effective memory expansion over CXL for data-intensive workloads
 - Jointly manages host DRAM, device DRAM (HDM) and NAND with flexible caching
 - No code changes to the existing applications
- NVMe-oC memory mode value proposition
 - Provides near-DRAM performance when the working set fits within DRAM plus HDM, serving as a standard CXL memory module for memory expansion
 - Delivers better performance/\$ (30~90% improvement) when the working set exceeds DRAM plus HDM, outperforming CMM-H through host-managed caching intelligence

