

Configurable Host Initiated Defrag (HID) for Optimal Efficiency

Presenter:

Alex Lemberg, Senior Technologist System Design

UFS Memory Fragmentation Features - Evolution

Fragmentation Features – HID & FBO

	Host Initiated Defrag ("HID")	File Based Optimization ("FBO")
cenario	Over time files written & erased -> No free blocks (occupied by partial valid data)	File is getting random updates in-place File is still sequential on the host LBA
roblem	Write performance drop due to Storage relocation in foreground to free blocks	File Read performance drop due to increased number of NAND Senses
olution	Proactive relocation (free up blocks in advance)	Defrag by relocation fragmented blocks on physical level
Benefit	Improve New file Write performance	Improve file Read performance
Perfor	Max Write Perf. (free blocks) Max Read Perf. (Min. NAND Senses)	Write/Read Perf. recovery
	Write Perf. drop - No free blocks, Host Read Perf. drop – Number of NAND se	- I

the Future of Memory and Storage

Host Initiated Defrag (HID) - Background

- The HID solution added to JEDEC UFSv4.1 standard
- The HID solution is coming to maintain Write performance over fragmented media
- The Host may check if the device is fragmented by using HID API
- If the device is fragmented, the Host may issue the HID operation
- Desired outcomes Free blocks for next host writes and better Write perf.

HID - Operation Flow

Host defines optimal timing for HID

- Check If Fragmented
- Run Defrag

Storage performs physical defrag (in IDLE)

Free Blocks available to absorb Write operation

Optimal Time Example:

- During night/charging
- During Idle Time
- Initiated by User App

Write Performance %

Running HID in Idle Time -> Get Ready for the Next Write

HID Efficiency - User Control

HID Operation – Vendor Specific Criteria

HID Defrag algorithm chooses Candidate Blocks based on a **Vendor-Specific** Criteria to achieve a Desired Outcome:

The same HID feature may produce completely different outcomes on products from different vendors

Proposed Solution –

Allow Calibration of HID Relocation Criteria

- Mapped Data Rate (MDR) in %
- Relocation Data Size

- Latency
- Free Space
- Write Amplification (WAF)

MDR – the % of valid mapped data within physical data block

The higher MDR % → The more data is relocated during Defrag → The higher WAF

Criteria Calibration -> HID Efficiency

* The example represents UFS storage device in a full and fragmented condition

Thank You!

