
Roman Pletka – IBM Research, Zurich

SSD controller architecture for similarity
search in Vector DBs

©2025 Conference Concepts, Inc. All Rights Reserved

Motivation
Unstructured data growth drives new possibilities for
business value; But are businesses able to interpret and
extract content from this data?

• Semantic search technologies that provide contextually
relevant input tokens to a model can significantly
improve the quality of search results.

• Contextually relevant data can be extracted using a
process called Retrieval Augmented Generation (RAG)
that retrieves semantically similar related facts from a
large data store (e.g., vector database).

• However, the number of vectors to be searched for
similarity is growing towards several billions and can no
longer be kept in DRAM.

• Performing searches in storage directly can be highly
parallelized to achieve high scalability and fast retrieval.

©2025 Conference Concepts, Inc. All Rights Reserved

Data
Retrieval

(RAG)

Generator ResponsePrompt

RAG Pipeline

Vector similarity search background

• Goal: Find similar data/documents based on their
vector embedding representations.

• Enables efficient exploration, analysis, and
information retrieval on very large data sets.

• Fundamental building block in a wide range of
data-driven applications, Wide range of
applications:
• Image, video, audio similarity search

• AI drug discovery

• Semantic search engine

• DNA sequence classification

• Question answering system

• Recommender system

• Anomaly detection

• Retrieval Augmented Generation (RAG)

©2025 Conference Concepts, Inc. All Rights Reserved

Source: https://opendatascience.com/wp-content/uploads/2022/03/vectors-3d-multi.png

Vector search overview

Nearest Neighbor Search

©2025 Conference Concepts, Inc. All Rights Reserved

Inverted File Index (IVF)

k nearest
neighbors

Hierarchical Searches

Partitioning: Lists

Exhaustive Search

Quantization-based: IVF-PQ

Partitioning: Graphs

Search Vector

Search Vector

Centroids

k Nearest
Neighbors
(KNN) Graph

starting vector

nearest
neighborSearch vector

Inverted File Index (IVF) with
Product Quantization (PQ)

Search
Vector

Centroids

PQ
Vectors

Full Precision
(FP) Vectors

Quantization-based: DiskANN

SPTAG, SPANN, HNSW, …

Search
Vector

N PQ
Vectors

FP Vectors with R Neighbors

DRAM SSD

Vector Search Module (VSM)
An FPGA-based hardware architecture for similarity search

Block mode

Capacity

LPT

Data format

©2025 Conference Concepts, Inc. All Rights Reserved

Flash Core Module FCM

QLC (dynamic SLC/QLC)

 - 14.4 - 115.2 TB effective
 - 4.8 - 38.4 TB physical

 - 4kB granularity
 - Pageable LPT

 - Data straddles across
 codewords (compression)
 - 3:1 hardware-based
 compression

Vector Search Module VSM

SLC only

1.2 – 9.6 TB; up to:
 - 37B vectors (d=128, FP16)
 - 2.3B vectors (d=1024, FP32)

 - Variable sized data chunks
 > 3500 x smaller LPT
 - LPT fully in DRAM

 - Clusters and sub-clusters,
 - Vector information aligned to
 codewords
 - No compression

Built on same hardware !

Data layout
• Vector data is grouped into clusters.

• Clusters are split into sub-clusters to
address the NAND Flash intricacies:
• Sub-clusters are stored sequentially and

are striped over all planes/channels.
• Sub-clusters do not straddle block stripes.
• Sub-clusters allow to efficiently add,

remove, reorganize vectors in the VSM.

• Cluster traversal for similarity search
optimized to tap the full potential of the
hardware parallelism in the SSDs.

©2025 Conference Concepts, Inc. All Rights Reserved

Controller

Ch 0

…

Ch 1

…

Ch 2 Ch 3 Ch n

…

…

…

…

Die
Pl 0 Pl 1 Pl 2 Pl 3

Die
Pl 0 Pl 1 Pl 2 Pl 3

Die
Pl 0 Pl 1 Pl 2 Pl 3

Die
Pl 0 Pl 1 Pl 2 Pl 3

Die
Pl 0 Pl 1 Pl 2 Pl 3

Die
Pl 0 Pl 1 Pl 2 Pl 3

Die
Pl 0 Pl 1 Pl 2 Pl 3

Die
Pl 0 Pl 1 Pl 2 Pl 3

Die
Pl 0 Pl 1 Pl 2 Pl 3

Die
Pl 0 Pl 1 Pl 2 Pl 3

Die
Pl 0 Pl 1 Pl 2 Pl 3

Die
Pl 0 Pl 1 Pl 2 Pl 3

Die
Pl 0 Pl 1 Pl 2 Pl 3

Die
Pl 0 Pl 1 Pl 2 Pl 3

Die
Pl 0 Pl 1 Pl 2 Pl 3

Block Stripe 800 – 1000 MB (SLC)

Page Stripe 1 – 2 MB (SLC)

Cluster 0 Sub-Cluster 0

Sub-cluster 0
Sub-cluster 1
Sub-cluster 2

Sub-Cluster 1

Sub-Cluster 0
…

Page
Codeword 0

Codeword 1

Vectors

LPT and GC in a VSM

The traditional LPT is replaced by:

• Cluster-to-subcluster mapping table.

• Sub-cluster to physical NAND location table.

Challenges and benefits:

• Granularity is no longer fixed-size.

• VSM LPT is 3500x smaller and fits entirely
into DRAM => No LPT paging required.

What is kept:

• Stripe-to-blocks allocation table.

©2025 Conference Concepts, Inc. All Rights Reserved

Garbage collection:

• Entire sub-clusters are invalidated, and still
valid sub-clusters must be relocated.

• Track validity of sub-clusters on the block
stripe level.

• Same GC algorithm can be used as in FCM.

Further improvements

• A limited number of individual vectors in a
sub-cluster can be invalidated using skip lists.

• Any new vector added to a cluster can be
appended to the last or added into a new sub-
cluster.

• GC cleanup of sub-cluster with large skip list.

VSM Hardware Architecture
• Sub-cluster data is read in parallel from Flash. After ECC decoding, vector data is extracted from codewords.
• The VSM currently supports 32 parallel data pipelines for processing query vectors.

©2025 Conference Concepts, Inc. All Rights Reserved

Data Pipeline

Query
Vectors

X

X

Multipliers
(FP16, …)

X

Flash
channels ECC

Decoder

[x:0]

[2x:x]

[(l-1)∙x : l∙x]

+

+

+

+

+

+∙
∙

∙ ∙
 ∙

 ∙

∙ ∙
 ∙ +

Adder Tree
Calculate partial distance

8
:1

8
:1

8
:1

1/8 distance
result every
clock cycle

+
>

>

>

>1full distance
result every

8 clock cycles

Comparators
(Max heap, …)

∙ ∙
 ∙

Distance Calculation (Inner product, …) KNN

CW
Extractor

∙
∙

∙

∙ ∙
 ∙

KNN Result

KNN result header
QueryID, ClusterID,
Sub-clusterID

Result Data

Distance Vector idx

Distance Vector idx

Distance Vector idx

∙ ∙ ∙

∙ ∙
 ∙

Data set and evaluation environments

Data sets:

• ArXiv vector data set:
• 3.5 millions PDF papers collected from arxiv.org

(2007 to 2024) by a research team internally.

• Embedding:

• Using ColPali vision LLM: PDF pages divided
into patches; each patch is embedded into a
vector with 128 dimensions using float16.

• Data set contains up to 6 billion vectors.

• Data set includes ~10k query vectors and ground
truth for top-100 for each query vector using
inner product.

• Common Crawl data set
• Documents from commoncrawl.org

• Embedding: 384 dim using float16

• Total up to 1.2 billion vectors

©2025 Conference Concepts, Inc. All Rights Reserved

Evaluation environments:

• Exhaustive search:
Search all vectors stored in VSM and return
top-k vectors. The search uses a single cluster.

• Data sets: 1M vectors from ArXiv data set, 1.2B from
Common Crawl data set

• Result: up to top-100 vectors for each query vector

• ANN search using IVF:
• Using 100M (Common Crawl) and 1B vectors (ArXiv)

• Used balanced clustering to create 10k clusters

• Number of clusters queried = 100

• Centroids search performed outside VSM

• All queried clusters are search in VSM

Exhaustive search performance
Performance comparison of various configurations with a single VSM using the ArXiv data set:

©2025 Conference Concepts, Inc. All Rights Reserved

• A single VSM with 16 channels searches 1 million vectors in less than a hundredth of a second.

• The top-k nearest neighbor search is not in the critical path (k<100). No measurable impact on search time.

• Number of concurrent ECC decoders limits processing throughput requiring more decoders. Alternatively,
simpler decoders can be used as NAND Flash is used in SLC mode to reach the maximum Flash channel
bandwidth.

• Currently investigating how to further increase number of parallel query vectors searched while using all
NAND Flash channels.

Vectors NAND Channels ECC Decoders Queries Top-k Time (s) QPS QPS/W
1 million 8 1 32 1 0.071 3601.50 144.06

8 1 32 10 0.071 3601.50 144.06

8 1 32 100 0.071 3601.50 144.06

8 max 32 10 0.015 17031.10 681.24

8 max 32 100 0.015 17031.10 681.24

16 max 8 10 0.008 8515.55 340.62

16 max 8 100 0.008 8515.55 340.62

Exhaustive search – system-level performance

• Estimated system-level efficiency gains from using VSMs compared to CPU-based, GPU and VSM approaches
performing exhaustive search with 32 query vectors on the Common Crawl 1.2B data set:

©2025 Conference Concepts, Inc. All Rights Reserved

Efficiency Gains w.r.t :

System
Configurations
with VSMs

CPU only GPU-based
Intel 8568Y+, 96c,
2TB DRAM DDR5
@5600MT/s

1x NVIDIA L4 GPU,
2-socket server
(Intel 5520+)

8x NVIDIA L4 GPUs,
2-socket server
(Intel 5520+)

1x NVIDIA H100 GPUs,
2-socket server
(Intel 8568Y+)

4x NVIDIA H100 GPUs,
2-socket server
(Intel 8568Y+)

QPS
gain

QPS/W
gain

QPS
gain

QPS/W
gain

QPS
gain

QPS/W
gain

QPS
gain

QPS/W
gain

QPS
gain

QPS/W
gain

Server (Intel 8462Y+)
- 1x VSM, single ECC dec 2.295 2.688 0.097 0.089 0.084 0.144 0.040 0.090 0.036 0.203

Server (Intel 8462Y+)
- 1x VSM, multiple ECC dec 20.657 24.193 0.877 0.802 0.755 1.300 0.361 0.809 0.327 1.831

1U enclosure with processor
- 12x VSMs 247.883 201.612 10.519 6.686 9.060 10.831 4.336 6.745 3.923 15.257

4U enclosure with processor
- 48x VSMs 991.533 403.224 42.077 13.371 36.239 21.663 17.344 13.490 15.693 30.515

Data storage and processing using IVF

IVF search approach with VSMs:

• Keep cluster centroids in DRAM.

• Store entire clustered vector data set in
VSMs.

• Send query vectors of selected clusters to
VSMs.
• Maintain several replicas of a cluster across

VSMs.

• Each VSM performs top-k on all clusters
queried.

• Perform final top-k on all results returned
from VSMs.

©2025 Conference Concepts, Inc. All Rights Reserved

Challenges in batch processing:

• For a set of b query vectors, determine which
clusters must be queried for each query based on
centroids, then schedule the computation in
batches on the VSMs using this mapping:
• Best case: All queries target the same clusters.

=> the most acceleration across all options.

• Worst case: All queries target different clusters.
=> sequential processing of multiple clusters.

C
lu

st
er

s

Queries per cluster

B=32 queries

underutilized
batches

Performance results for ANN with IVF
• Dataset: Common Crawl 100M, 10k clusters.

• Workload: up to 10k queries, batch size = 32 queries.

• Vary the query set size (nqueries) and the number of
clusters queried (nprobes).

©2025 Conference Concepts, Inc. All Rights Reserved

nqueries
nprobe

4 8 32 64 128 256 512
1 0% 0% 0% 0% 0% 0% 0%
32 0% 0% 0% 0% 0% 0% 0%
64 0% 0% 0% 0% 0% 48.0% 50.0%
128 0% 0% 0% 0% 48.7% 66.5% 73.3%
512 0% 0% 25.5% 61.3% 77.7% 86.3% 90.4%
1024 0% 0% 53.3% 72.6% 85.4% 91.5% 94.2%
10000 32.0% 57.6% 88.6% 94.1% 96.6% 97.9% 98.6%
1-recall@10 0.734 0.827 0.947 0.972 0.978 0.994 1
10-recall@10 0.611 0.716 0.861 0.912 0.944 0.968 0.997

Percentage of fully-utilized query batches

• Dataset: ArXiv 1B, 10k clusters, 1000 queries.

• Workload: 1000 queries, batch size = 32 query vectors.

• Vary the number of clusters queried (nprobes: 1, …, 256).

• VSM-based architectures show extremely good
performance when number of clusters queried is high: On
par with CPU-only for single VSM; > 10x for multiple VSMs.

1

10

100

1000

10000

0.6 0.7 0.8 0.9 1

Th
ro

ug
hp

ut
 [q

ps
]

10-recall@10

FAISS IVF on CPU
Single VSM
1U enclosure, 12 VSMs
4U enclosure, 48 VSMs

Existing interfaces

NVMe Key Value Command Set Specification 1.2
https://nvmexpress.org/specification/key-value-command-set-specification/

• Provides interface to store unstructured data by a
key.

• There is no meta-data associated with values.

• Key-value operations:

• Store, retrieve, delete, list

• Values are not updatable in place

• The interface could be used for vector search
where individual vectors or clusters are stored ad
key-value pairs.

©2025 Conference Concepts, Inc. All Rights Reserved

Amazon S3 Vectors
https://nvmexpress.org/specification/key-value-command-set-specification/

• Cloud object storage interfaces for storing and
querying vectors using a REST API.

• Vectors are stored in buckets each having up to
50M vectors. Indexes are then created on buckets
=> Clusters can be organized into buckets.

• Operations:

• PutVectors, QueryVectors, DeleteVectors,
ListVectors

• CreateVectorBucket, CreateIndex, DeleteIndex, …

Existing interfaces lack Flash-friendly capabilities to organize clusters into sub-clusters for vector search

https://nvmexpress.org/specification/key-value-command-set-specification/
https://nvmexpress.org/specification/key-value-command-set-specification/

Conclusion and outlook

• VSMs are a cost and power-efficient solution to build highly scalable
vector similarity search engines.

• CSD SSDs can be either used as an FCM storage device or VSM in a
storage array. The storage array can dynamically convert devices to be
used as FCM or VSM.

• Next steps:
• Full integration of VSMs into an all-flash array.

• Optimize VSM hardware to support multiple vector formats.

• Reliability: Array-level RAID5/6 replaced by storing cluster replicas across
VSMs. Determine optimal placement strategies of cluster replicas.

©2025 Conference Concepts, Inc. All Rights Reserved

Team

©2025 Conference Concepts, Inc. All Rights Reserved

Haris Pozidis
Principal Research
Scientist
Master Inventor

Roman Pletka
Senior Research Scientist
Master Inventor

Dionysios
Diamantopoulos
Staff Research
Scientist

Tim Fisher
FlashCore Module
Chief Architect
STSM
Master Inventor

Dan Lazar
Senior Hardware
Developer

Justin Haggard
Senior Firmware
Developer

Jovan Blanuša
Research Scientist

©2023 Flash Memory Summit. All Rights Reserved

17

Thank you!

Roman Pletka
Senior Research Scientist

Master Inventor

rap@zurich.ibm.com

Contributors:
- Haris Pozidis

- Jovan Blanuša

- Dionysios Diamantopoulos

- Dan Lazar

- Justin Haggard

- Tim Fisher
IBM Research Europe – Zurich

mailto:rap@zurich.ibm.com

	Slide 1: SSD controller architecture for similarity search in Vector DBs
	Slide 2: Motivation
	Slide 3: Vector similarity search background
	Slide 4: Vector search overview
	Slide 5: Vector Search Module (VSM) An FPGA-based hardware architecture for similarity search
	Slide 6: Data layout
	Slide 7: LPT and GC in a VSM
	Slide 8: VSM Hardware Architecture
	Slide 9: Data set and evaluation environments
	Slide 10: Exhaustive search performance
	Slide 11: Exhaustive search – system-level performance
	Slide 12: Data storage and processing using IVF
	Slide 13: Performance results for ANN with IVF
	Slide 14: Existing interfaces
	Slide 15: Conclusion and outlook
	Slide 16: Team
	Slide 17: Thank you!

