
Flash Fleet - Update

Vineet Parekh, Meta

https://gamma.app/?utm_source=made-with-gamma

Latency Monitoring

● Previous Limitations: Host-level checks missed
extreme tail latencies (P99.999999+) due to their
transient nature.

● Challenge: Intermittent SSD failures made debugging
and data collection difficult for vendors.

● Solution – Latency Monitoring: Enables precise
detection of tail latencies and stalls, improving visibility
and SSD-level diagnostics.

Thousands Of
Drives Enabled

SSDs with Latency Monitoring active

How Latency Monitoring Works
Latency Buckets: I/O completion times are categorized into configurable latency ranges.

Operation Tracking: Monitors read, write, and TRIM operations across these latency thresholds.

Dual Counters: Uses active (short-term) and static (long-term) counters for real-time and historical insights.

Classification

Each I/O operation is sorted

into one of four latency

buckets based on completion

time

Thresholds

Host-defined boundaries (e.g.,

100ms, 250ms, 500ms,

1000ms) determine bucket

assignment

Persistence

Data persists across resets and

power cycles for long-term

analysis

Latency Bucket Configuration

Bucket Latency Range Example Threshold

Bucket 0 ≤ Threshold A 100ms

Bucket 1 > A and ≤ B 250ms

Bucket 2 > B and ≤ C 500ms

Bucket 3 > C and ≤ D 1000ms

Thresholds A through D are configured by the host system and define the latency boundaries for different

operation types (read, write, and TRIM commands). This bucketing approach allows for granular analysis of

performance degradation patterns.

Core Components: Active Counters

Active Bucket Counter

Track I/O latency in the

current window; reset

periodically (e.g., every 7

days). Ideal for short-term

diagnosis and recent latency

spikes.

Active Measured
Latency
Captures mean latency (ms)

of I/Os within each bucket,

indicating severity. Returns

zero if unsupported or no

matching I/Os.

Active Latency Time
Stamp
Marks when each active

bucket was last updated. Aids

in correlating latency events

with host or app logs. Shows

N/A if inactive.

Core Components: Static Counters

Static Bucket Counter

Store total I/O counts from the

last window; persist across

resets/power cycles. Useful

for spotting chronic issues or

long-term degradation.

Static Measured Latency

Tracks average latency per

bucket since reset.

Complements static counters

for trend analysis and

historical comparisons.

Static Latency Time Stamp

Logs when each static bucket

was last updated. Helps

identify timing of stalls or

degradation for effective

debugging.

Fleet-Wide Detection Results
● Active bucket data rolls into static buckets after 7 days, preserving latency history for analysis.
● A stall is defined as a read or write operation taking over 1 second to complete.
● Latency events are time stamped for precise correlation within the monitoring window.
● In a sample 8-day period, 6.7K drives showed stall events based on Latency Monitoring logs.

Vendor A 3

Vendor B 14

Vendor C 6716

Vendor D 7

Open Source SSD Test Cases: Revolutionizing Storage Qualification

● Open-Sourced Testing: Meta has open-sourced its SSD qualification tests via OCP Diag Autoval on GitHub, aligning
internal and vendor workflows.

● Industry Standardization: Establishes a unified framework for joint SSD and firmware qualification, accelerating testing
and reducing industry-wide effort.

Industry Benefits
Faster, consistent testing and savings.

Aligned Codebases
Internal and external code synchronized.

Joint Qualification
Standard for SSD vendors' testing.

Core Framework

Key Benefits and Savings

25%
Time Reduction

Qualification timeline reduced from eight weeks to six

weeks in one program.

100%
Lab Consistency

Results are now fully reproducible and comparable

between Meta and vendor labs.

↓
Resource Optimization

Dramatic reduction in resource commitment for a single

drive qualification process.

Implementation Timeline
1November 2023

Meta discontinues Hi5 support

2 Q1 2024

SSD test cases shared under NDA with SSD Vendors

3May 2024

OCP Diag Autoval Framework + several SSD test cases made

public on GitHub
4 November 2024

SSD Vendors agreed to use and support GitHub codebase

5H1 2025

Several Joint Quals with Meta and SSD vendors kicked off using

Open source SSD tests
6 June 2025

Remaining SSD test cases uploaded to GitHub

AutoVal Framework Core Capabilities

Multi-Step Validation
Tests consist of multiple steps with individual pass/fail verdicts and diagnostic

feedback, improving failure traceability and debugging.

Reusable Libraries
Shared functionality is encapsulated in common libraries, reducing duplication

and enforcing consistency across test cases.

Test Life Cycle Management
Each test follows a clear initialization, execution, and teardown cycle with

built-in error recovery and result reporting.

Environment Flexibility
Designed to operate in secure lab environments using SSH-based access to

control DUTs and associated BMCs.

SSD Test Case Coverage and Interfaces

The AutoVal framework supports SSD testing across multiple storage interfaces including NVMe, SAS, and SATA, with a

comprehensive library of test modules.

NVMe CLI
interactions

Data integrity
verification

Cache and flush behavior
testing

Namespace resizing

Filesystem
operations

Test Execution Flow

Command Invocation

Test initiated via CLI command specifying test module, configuration file, and

control parameters.

Configuration Loading

Host details loaded from JSON config file, while test parameters pulled from control

file.

Test Execution

Framework orchestrates test logic execution, leveraging shared libraries for

consistency.

Result Generation

Output generated in OCP Diag-compliant JSON format with pass/fail status,

metadata, and timestamps.

Diagnostic Output and Result Analysis

The AutoVal framework generates standardized, parsable output that can be analyzed programmatically or reviewed manually by

engineering teams.

Standardized Format

OCP Diag-compliant JSON format ensures

consistent reporting across all test runs regardless

of environment.

Comprehensive Metadata

Output includes configuration details, test

parameters, timestamps, and complete execution

history.

Collaborative Debugging

Common output format enables Meta and vendor

teams to efficiently compare results and resolve

issues together.

Resources and Next Steps
Official GitHub Repositories

• OCP Diag Autoval Framework

• OCP Diag Autoval SSD Test Cases

• OCP Diag Autoval SSD Test Suites

Documentation and References

• OCP Official Blog Post

How to Get Started

For other hyperscalers and SSD vendors looking to implement the AutoVal framework, start by cloning the GitHub

repositories and following the documentation. For questions or support, use GitHub issue tracking to engage with

the community.

https://github.com/opencomputeproject/ocp-diag-autoval
https://github.com/opencomputeproject/ocp-diag-autoval-ssd
https://github.com/opencomputeproject/ocp-diag-autoval-ssd/tree/dev/src/autoval_ssd/cfg/test_suites
https://www.opencompute.org/blog/introducing-metas-open-source-testing-framework-revolutionizing-ssd-qualifications

Thank You!

