Abstracting the Cloud: The Evolution of
Dropbox's Object Store

Alok Ranjan

Software Engineering Manager

Dropbox Inc. N
—MS
Ne—

the Future of Memory and Storage

Introduction

Alok Ranjan

Engineering Manager, Storage Platform @ Dropbox

Education

Masters from Carnegie Mellon University

Experience

Big Switch Networks, VMware, Cisco

Focus

Storage systems, scalable infrastructure, Telemetry

The Problem: Legacy Storage Pain Points

Before Object Store (Pre-2020)

 Amazon S3 + HDFS as backbone storage
« Magic Pocket for user files only

« S3/HDFS for internal products

Major Pain Points
 Cost Inefficiency: Expensive S3 PUT/GET requests
 No Flexibility: Locked into S3 as default
 Operational Overhead: Multiple storage systems

* Limited Control: No centralized policies

'S3 was simply an expensive default choice”

The Vision: Meta-Store Abstraction

What We Wanted

» Transparent Backend Routing based on cost & access
patterns

e Centralized Control for all blob traffic

 Additional Features: Encryption, monitoring, retention
policies

The Birth of Object Store (2020)

"Pedestrian name, but impact has been anything but”

Object Store Architecture

Abstraction Layer

3
=~ Doesn't store data directly
Object Store Front End

Smart Routing

@g PUTs to cheapest store, GETs to correct store i l l i
MySQL Metadata Blob Blob Blob

% . Metadata DBs Storage: S3 Storage: MP Storage: etc
Tracks object placements

Key Backend: Magic Pocket

 Our internal storage system
» Critical Constraint: Optimized for 4MB blobs

» Understanding Magic Pocket explains our design decisions

Magic Pocket: Our Foundation

Exabyte-Scale Blob Storage

» Customer Data Storage: All Dropbox user files
« Availability: 99.99% uptime
» Scale: Millions of queries/second, 600K+ storage drives

« Geography: Three North American regions

Magic Pocket Architecture

100+ 2+ PB

Disks per OSD Storage per OSD
Each Object Storage Device contains over Each OSD manages more than 2
100 disks petabytes of data
Key Design Principles

* Immutable Writes: Data never changes after write
 Cold Data Optimization: Most data rarely accessed

« 4MB Blob Optimization: Sweet spot for performance

11 9s

Durability

Fifteen nines via erasure codes

Object Store API & Structure

S3-Compatible API Smart Backend Selection
« PUT, GET, DELETE, LIST operations S3: Global regions, legacy compatibility
* Pails = containers (like S3 buckets) » Magic Pocket: Cost-efficient, high-performance

 Future backends: Ready for new technologies

Innovation #1: Batched Writes

1 Enqueue PUT requests by pail
2 Trigger on timeout OR size threshold
3 Concatenate multiple objects — single blob

4 Write to Magic Pocket (targeting 4MB)

O Store metadata with offsets

Impact

* Fewer PUT requests = major cost savings

» Optimized for Magic Pocket 4MB constraint
» Cache optimization for GETs

Innovation #2: Layered Encryption

Level 1: Object Encryption
1 AES-256 with unique 256-bit BEK per object

Level 2: Key Encryption
9 BEK encrypted with versioned KEK

Encrypted BEK stored in MySQL

Benefits

» Three-factor security: Data + BEK + KEK required

» Efficient key rotation: No object rewrites needed

Innovation #3: Crypto-Shredding for Deletions

The Challenge Solution: Crypto-Shredding
» Compliance: Data must be purged within deadline Simply wipe object metadata (including encrypted BEK)
 Batching Problem: Can't batch DELETESs safely * No KEK = No data access

« Synchronous compliance via MySQL

« Asynchronous space reclamation

Innovation #4: Object Chunking

The Problem Chunking Solution
« Magic Pocket optimized for 4MB - Break large objects into 4MB chunks
« Many objects > 4MB (logs, artifacts,
media) « Store chunks in Magic Pocket
* Original solution: Route large objects - Parallel reconstruction at read time
to expensive S3 - Deterministic keys : No extra

metadata needed

Benefits

» All data hits Magic Pocket's sweet
spot

 Millions in annual S3 cost savings

Al Era Evolution: Future Directions

@

Current AI Opportunities
 Natural language search
« Content summarization

* Knowledge management systems

<[>

Planned Enhancements

- Lambda Functions: Object
writes/modifications

- Database Backend:
Cassandra/RocksDB on Object Store

* Third-party Integration : Apache
Pinot, Loki

O

SkyVault-Inspired Next-Gen
Storage

« Open-source cloud -native key-value
store

« Compute-storage separation using
Object Store foundation

 Target: Al/ML workloads, feature
stores, analytics

Impact & Results

Cost Savings

* Millions saved annually from S3

optimization

« HDFS deprecation = additional

millions

» Reduced API costs via batching

Technical Achievements

* Unified storage interface across

backends

- Flexible routing based on
cost/requirements

- Enhanced security with granular
encryption

« Compliance ready with instant
deletion

Strategic Impact
» Vendor independence

 Future-proof architecture for Al
workloads

» Platform foundation for next-gen
systems

Key Takeaways

Technical Lessons Strategic Insights

1 Abstraction pays off :One interface, 1 Build for flexibility :Requirements
multiple backends change

2 Batching transforms economics : Fewer 2 Measure everything : Optimization
API calls = savings requires monitoring

3 Right -sizing matters : Match chunks to 3 Security by design : Easier than bolting on
backend constraints later

4 Learn from open source :SkyVault guides 4 Think beyond current needs : Alera

next-gen storage reshapes storage

Questions?

Thank you!

Alok RanjanSoftware Engineering Manager, Dropbox IncStorage Platform

Tfeam

@LifeInsideDropbox

@ dropbox.com/jobs

https://gamma.app/?utm_source=made-with-gamma

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16

