
Abstracting the Cloud: The Evolution of
Dropbox's Object Store

Alok Ranjan

Software Engineering Manager

Dropbox Inc.

Introduction

Alok Ranjan
Engineering Manager, Storage Platform @ Dropbox

Education
Masters from Carnegie Mellon University

Experience
Big Switch Networks, VMware, Cisco

Focus
Storage systems, scalable infrastructure, Telemetry

The Problem: Legacy Storage Pain Points
Before Object Store (Pre-2020)

• Amazon S3 + HDFS as backbone storage

• Magic Pocket for user files only

• S3/HDFS for internal products

Major Pain Points
• Cost Inefficiency: Expensive S3 PUT/GET requests

• No Flexibility: Locked into S3 as default

• Operational Overhead: Multiple storage systems

• Limited Control: No centralized policies

"S3 was simply an expensive default choice"

The Vision: Meta-Store Abstraction

What We Wanted
• Transparent Backend Routing based on cost & access

patterns

• Centralized Control for all blob traffic

• Additional Features: Encryption, monitoring, retention
policies

The Birth of Object Store (2020)

"Pedestrian name, but impact has been anything but"

Object Store Architecture

Abstraction Layer
Doesn't store data directly

Smart Routing
PUTs to cheapest store, GETs to correct store

MySQL Metadata
Tracks object placements

Key Backend: Magic Pocket

• Our internal storage system

• Critical Constraint: Optimized for 4MB blobs

• Understanding Magic Pocket explains our design decisions

Magic Pocket: Our Foundation

Exabyte-Scale Blob Storage
• Customer Data Storage: All Dropbox user files

• Availability: 99.99% uptime

• Scale: Millions of queries/second, 600K+ storage drives

• Geography: Three North American regions

Magic Pocket Architecture

100+
Disks per OSD

Each Object Storage Device contains over
100 disks

2+ PB
Storage per OSD

Each OSD manages more than 2
petabytes of data

11 9s
Durability

Fifteen nines via erasure codes

Key Design Principles

• Immutable Writes: Data never changes after write

• Cold Data Optimization: Most data rarely accessed

• 4MB Blob Optimization: Sweet spot for performance

Object Store API & Structure

S3-Compatible API
• PUT, GET, DELETE, LIST operations

• Pails = containers (like S3 buckets)

Smart Backend Selection
• S3: Global regions, legacy compatibility

• Magic Pocket: Cost-efficient, high-performance

• Future backends: Ready for new technologies

Innovation #1: Batched Writes

1 Enqueue PUT requests by pail

2 Trigger on timeout OR size threshold

3 Concatenate multiple objects → single blob

4 Write to Magic Pocket (targeting 4MB)

5 Store metadata with offsets

Impact
• Fewer PUT requests = major cost savings

• Optimized for Magic Pocket 4MB constraint
• Cache optimization for GETs

Innovation #2: Layered Encryption

1
Level 1: Object Encryption
AES-256 with unique 256-bit BEK per object

2
Level 2: Key Encryption
BEK encrypted with versioned KEK

Encrypted BEK stored in MySQL

Benefits

• Three-factor security: Data + BEK + KEK required

• Efficient key rotation: No object rewrites needed

Innovation #3: Crypto-Shredding for Deletions

The Challenge
• Compliance: Data must be purged within deadline

• Batching Problem: Can't batch DELETEs safely

Solution: Crypto-Shredding
• Simply wipe object metadata (including encrypted BEK)

• No KEK = No data access

• Synchronous compliance via MySQL

• Asynchronous space reclamation

Innovation #4: Object Chunking

The Problem
• Magic Pocket optimized for 4MB

• Many objects > 4MB (logs, artifacts,
media)

• Original solution: Route large objects
to expensive S3

Chunking Solution
• Break large objects into 4MB chunks

• Store chunks in Magic Pocket

• Parallel reconstruction at read time

• Deterministic keys : No extra
metadata needed

Benefits
• All data hits Magic Pocket's sweet

spot

• Millions in annual S3 cost savings

AI Era Evolution: Future Directions

Current AI Opportunities
• Natural language search

• Content summarization

• Knowledge management systems

Planned Enhancements
• Lambda Functions : Object

writes/modifications

• Database Backend:
Cassandra/RocksDB on Object Store

• Third-party Integration : Apache
Pinot, Loki

SkyVault-Inspired Next-Gen
Storage

• Open-source cloud -native key-value
store

• Compute-storage separation using
Object Store foundation

• Target : AI/ML workloads, feature
stores, analytics

Impact & Results

Cost Savings
• Millions saved annually from S3

optimization

• HDFS deprecation = additional
millions

• Reduced API costs via batching

Technical Achievements
• Unified storage interface across

backends

• Flexible routing based on
cost/requirements

• Enhanced security with granular
encryption

• Compliance ready with instant
deletion

Strategic Impact
• Vendor independence

• Future-proof architecture for AI
workloads

• Platform foundation for next-gen
systems

Key Takeaways

Technical Lessons

1 Abstraction pays off : One interface,
multiple backends

2 Batching transforms economics : Fewer
API calls = savings

3 Right -sizing matters : Match chunks to
backend constraints

4 Learn from open source : SkyVault guides
next-gen storage

Strategic Insights

1 Build for flexibility : Requirements
change

2 Measure everything : Optimization
requires monitoring

3 Security by design : Easier than bolting on
later

4 Think beyond current needs : AI era
reshapes storage

Questions?

Thank you!
Alok Ranjan Software Engineering Manager, Dropbox Inc. Storage Platform
Team

@LifeInsideDropbox

dropbox.com/jobs

https://gamma.app/?utm_source=made-with-gamma

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16

