Bringing Analytics to the Data: In-Storage Computing for pNFS

Qing Zheng, Scientist, Los Alamos National Lab (LANL) qzheng@lanl.gov

The Challenge of Scientific Data at Scale

LANL simulations (wildfires, rising seas, high-energy particles) are among the world's most complex

PBs of data per timestep with 1000s of timesteps

Insight comes from analysis, not just simulation

Analyzing these massive datasets is becoming a bottleneck

LANL is exploring computational storage

Part of our broader push to modernize I/O and storage at scale

Why Computational Storage

Selective data access

- Many queries need <1% of data (e.g., wildfire front)
 - Today's tools often read the entire dataset—this doesn't scale
- Loading full datasets demands massive memory on compute nodes, limiting where analysis can run

Adaptable compute placement—host, network, storage

• Computational storage lets us assign compute tasks where they run best, as costs and technologies evolve

LANL's Compute-Near-Storage Journey

ABOF (Accelerated Box of Flash)—our prototype for data-agnostic acceleration

- Use ZFS plugins for in-line compression at device speed
 - Introduce ZFS Interface for Accelerators (ZIA)
 - Allow ZFS integration with ABOF and other techs like Intel QAT, MaxLinear, ...
 - Offload compression, checksumming, parity, and more

Data-aware offloads (the lab's more recent focus)

- Leverage pNFS and the Apache big data ecosystem for an open, deployable analysis pushdown architecture (this effort)
 - Enable selectively reading only what's necessary

A Standards-Based Architecture

Analysis

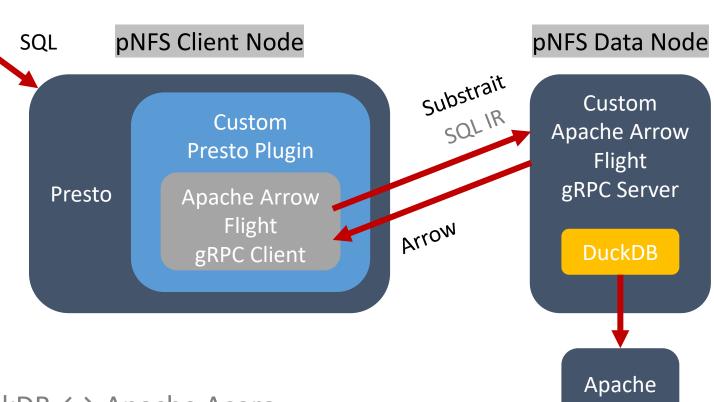
App

Data & Query Layers

Storage: Parquet

Query: Substrait

Execution: DuckDB (in-storage),


Presto (aggregation)

Communication

- Apache Arrow Flight (gRPC + Arrow)
- pNFS layout metadata guides query routing

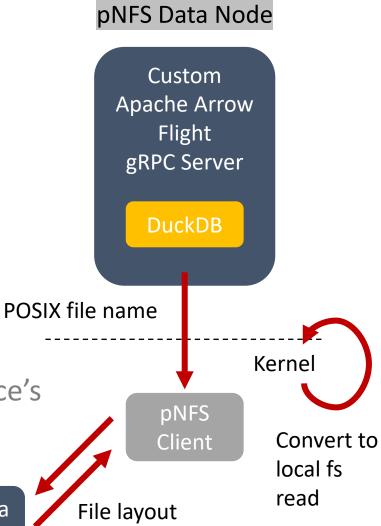
Modular Design

- Components are swappable
 - e.g., Presto ↔ Apache Spark, DuckDB ↔ Apache Acero
- Easy to plug in emerging techs—as long as they speak open protocols

Parquet

Secure, Transparent Access to Data

Standard permission checks

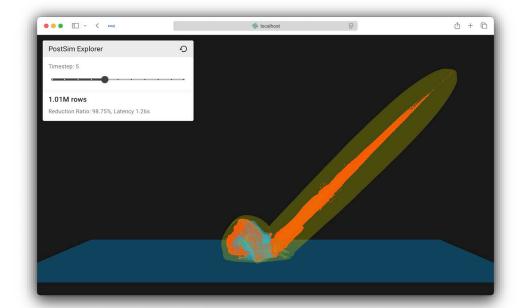

gRPC server runs as the end user, not root

No exposure of internal mappings

Queries use POSIX file names—not internal object IDs

Efficient data access

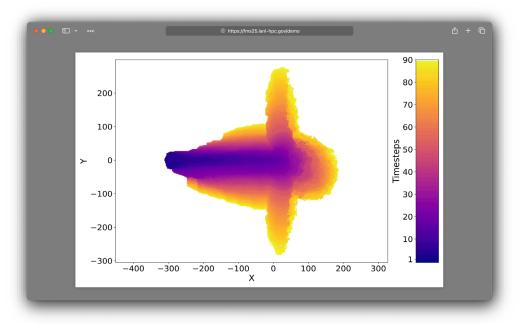
 pNFS data server self-identifies as storage holder and transparently performs local reads—thanks to Hammerspace's recent Linux kernel update


pNFS Metadata

Server

Real-World Impact and Demos

ISC-HPC 2025



Asteroid-ocean impact analysis
Integration with standard HPC analysis tools

Up to 99% less data movement

FMS 2025

Wildfire spread analysis
Object-based computational storage

Multi-layer query processing

Conclusions

In-storage analysis is most effective with

- Composable API
- Open, structured formats
 - LANL is looking at transitioning from legacy formats to modern analysisfriendly formats (Parquet, Arrow)

Open, standards-based stacks enable real deployment

Future work

- Continue working with our great partners: Hammerspace, SK, ...
- Deeper integration with scientific software
 - E.g., viz contour offload
- Client-driven erasure coding and N-1 writing in pNFS

