

Computational Storage Drive for LLM

Sebastien Jean, Phison Electronics, CTO

Adoption Constraints for On-Premise Generative Al

Fine-Tuning

- Rapid growth in model size
- Insufficient memory capacity
- Difficulty in scaling
- High machine costs slows adoption

Inference

- Insufficient memory for tokens
- Limited context for chat and prompt
- Slow responses hurt user experience

Making on-premise affordable

WHAT?

- 1. Make Edge Al affordable to a larger market → your hardware, your control
- 2. SMB: Offer edge *training* + *inference* to businesses as workstation or small server
- 3. Education: Support Al access for university professors, classes, labs and students (ie: wait time reduced from weeks → hours)

HOW?

- a. Decouple: DRAM, Compute and Model Size
- b. Scale each item independently to match need and budget
- c. aiDaptiv+ beyond RAM limits -> Fine-Tune, Model Streaming, KV Cache & Context Window

Reducing Post-training RAM with Flash offload

30 GPU to train Llama-2 (70B)

(Requires 8 Workstations and Network Infrastructure)

Note: Assumes 48GB / GPU

4 GPU to train Llama-2 (70B)

(Requires 1 Workstation)

Node 8

Phison aiDAPTIV solution

Coordinates the swapping between HBM/DRAM and Flash Memory

Seamless Integration with VRAM/DRAM

E28 - Al Optimized Gen5x4 SSD, 6nm w/ DSP

aiDAPTIV Value Propositions

- 1. Move low complexity update task off the GPU and eliminate extra PCIe hop to CPU
- 2. Improve pipeline performance by freeing up GPU sooner
- 3.40% improvement over other GPU+CPU and GPU+CPU+NAND solutions

Key Technologies

- 1. Integrate advanced math engine DSP directly into E28 controller
- 2. Enhanced LDPC engine to support greater throughput
- 3. Move to 6nm to reduce power requirements

Fine-tune DSP Concept

Basic training flow

Total # of time ticks: 30

Batch 1

Batch 2

Batch 3

GPU Time

With aiDAPTIVCache 2.0 DPS

Total # of Ticks: 18 Post Training Improved by 40%!

Batch 1

Batch 2

Batch 3

GPU Time

DSP Time

F Forward Propagation

Performance Results w/ Model Streaming (tokens/sec)

Basic DSP Fine-tune ($+86\% \sim +146\%$)

Error reduction is applied on every gradient

Model	Llama2-7B	Llama2-13B	Llama-70B	CodeLlama-70B	Falcon-180B
aiDAPTIV	4,338	2,717	388	403	108
aiDAPTIV w/ DSP	9,634	5,062	954	949	217
Improvement	122%	86%	146%	135%	102%

Efficient DSP Fine-tune $(+50\% \sim +87\%)$

o Error reduction is updated every 4 gradients

Model	Llama2-7B	Llama2-13B	Llama-70B	CodeLlama-70B	Falcon-180B
aiDAPTIV	5,750	3,393	519	524	138
aiDAPTIV w/ DSP	9,727	5,098	971	964	247
Improvement	69%	50%	87%	84%	78%

Faster inference after pre-fill, bigger context window

When the KV Cache runs out of room, the old entry is evicted.

If it is needed later, it must be re-calculated, which is surprisingly slow.

With aiDaptiv⁺, the evicted entries are moved to the SSD.

Fetching from SSD @ 7GB/s is still faster than re-calculating the value.

Performance Results

Test Configuration

o GPU: H200 w/ 141 GB HMB

Model: Qwen 2.5 32BInput/Output: 4000 / 200 token

o Parallel user: 220

o VIIm version: 0.8.3 (v0 engine)

Observations

- 1. Orange blocks mean reuse performance is better than recalculating
- 2. Hit Rate is the ratio of KV Cache entry reuse vs recalculating
- 3. Data Points

o Memory: 32GB (model) + 109 GB (KV Cache) ← Full

SSD BW: Gen4 x 4 = 7 GB/s
 PCIe DDR BW: Gen4 x 16 = 28 GB/s

Even though DDR BW over PCIe is > SSD BW, this is not the bottleneck.

Benefits

- > Support longer context and more user per GPU
- > Archive summarize and recall past conversation

Hit Rate	100%	75 %	50%	25%			
Recompute w/o cache (baseline)	Output: 464 tok/s TTFT Mean: 2,0134 ms TPOT Mean: 137 ms						
aiDAPTIV ⁺ SSD	624 tok/s TTFT 344 ms TPOT 101 ms	605 tok/s TTFT 611 ms TPOT 108 ms	532 tok/s TTFT 1,152 ms TPOT 121 ms	462 tok/s TTFT 2,185 ms TPOT 138 ms			
aiDAPTIV ⁺ DRAM	627 tok/s TTFT 344 ms TPOT 101 ms	608 tok/s TTFT 601 ms TPOT 108 ms	531 tok/s TTFT 1,141 ms TPOT 121 ms	468 tok/s TTFT 2,151 ms TPOT 136 ms			
LMcache SSD	342 tok/s TTFT 4,155 ms TPOT 195 ms	261 tok/s TTFT 5,713 ms TPOT 262 ms	263 tok/s TTFT 5,628 ms TPOT 258 ms	273 tok/s TTFT 5,909 ms TPOT 246 ms			
LMcache DRAM	408 tok/s TTFT 2172 ms TPOT 164 ms	380 tok/s TTFT 3,483 ms TPOT 175 ms	365 tok/s TTFT 3,884 ms TPOT 179 ms	364 tok/s TTFT 3,717 ms TPOT 182 ms			
GPU HMB (optimal)	781 tok/s TTFT 146 ms TPOT 71 ms	668 tok/s TTFT 302 ms TPOT 89 ms	615 tok/s TTFT 849 ms TPOT 105 ms	514 tok/s TTFT 1,736 ms TPOT 123 ms			

Thank you

Faster offload fine-tune

- Inference larger models
- **O** Bigger and faster KV Cache
- Accessible & Data Privacy

