Al Enterprise Market trends and opportunities

Nilesh Shah VP Business Development ZeroPoint Technologies

Enterprise Gen Al: Trends

Inference spend dominates

RAG use growing

Source: https://menlovc.com/2023-the-state-of-generative-ai-in-the-enterprise-report/

Early Adopters: Healthcare, Legal, Financial

DATA STORAGE

Layer 2:

Dominant Use cases: Code generation, Chatbots

DATA PRE-PROCESSING

EMBEDDINGS

Data Stack: New Entrants

Where 90%+ Gen AI executes: NeoCloud

source: https://semianalysis.com/2025/03/26/the-gpu-cloud-clustermax-rating-system-how-to-rent-gpus/

Infrastructure Scale: API vs NeoCloud vs On prem

Deployment Model	Provider / Client	End Users (est.)	GPUs / Servers Used	Inference vs Training Share
API services (ChatGPT)	OpenAl via CoreWeave	Millions	~10K+ H100 GPUs	~95 % inference / 5 % training
Hybrid (MSFT + NeoCloud)	Microsoft + CoreWeave	Hundreds K+ users	~150K GPUs share	~90 % inference
Public hyperscaler overflow	Azure, GCP using NeoCloud	10k+ enterprise developers	Thousands GPUs burst	Inference heavy use mainly
On-prem / colocation	Enterprise in NeoCloud DCs	Hundreds to thousands	Hundreds GPU scale clusters	~50–70% inference, RAG-heavy

Storage Implications: API vs NeoCloud vs On prem

Feature	NeoCloud	Public Cloud	On-Prem / Colocation	API-driven Services
Hot Tier (Flash/NVMe)	Yes (GPU-affine NVMe nodes)	Yes (EBS, gp3)	Yes (local NVMe/Optane)	Abstracted from user
Cold Tier (Object/HDD)	Yes, optional object scale-out	Yes (S3, Blob)	Optional via NAS or tape	Abstracted
Vector DB Integration	Built-in or orchestration- ready	Managed vector DB services	Manually deployed systems	Encapsulated in endpoint
KV Cache Tiering	NVMe-oF offload with GPUDirect	Limited caching layers	Custom tiered caches possible	Opaque
Shared Multi- Tenancy	Tenant-aware orchestration	Platform-level isolation only	Full control per enterprise	Not exposed
Latency Guarantees	~1–10 ms via NVMe- fabric	~5–100 ms across regions	~0.5–5 ms locally	Depends on provider
Custom Embedding Support	Full control & custom layout	API-specific restrictions	Fully programmable	Limited or hidden

Are all LLMs Transformers? Emerging Model Categories 2025

State of the Art

Category Name	What it Represents	Examples
Sparse MoE LLMs	Scalable, expert-gated Transformer	DeepSeek-V2, Mixtral, AlexaTM, Switch
State Space Hybrids	Linear-time sequence models	JAMBA, Mamba, RWKV, RetNet
Structured Token-Free	Non-token, graph, patch, or recurrent	Gemini 1.5, Hyena, CoLT5, MEGA

GPT style transformers are so 2024!

Memory	, /	Storage	lmp	lications
IVICITIOT 9	//	Juge	1111	

Metric	Sparse MoE (DeepSeek, Mixtral)	SSM Hybrid (JAMBA, Mamba)	Structured/Tokenless (Gemini, Hyena)	Dense Transformer (GPT-style)
VRAM per Inference Session	~10 GB	~6 GB	~8 GB	~20 GB
Tokens/sec per 1MW Power	~800K	~1.2M	~1.0M	~500K
Storage (100M docs, full RAG)	~100 TB	~80 TB	~90 TB	~120 TB
Concurrent Users per 1MW	~2,000	~3,500	~3,000	~1,000

Model storage requirements

Compon ent	Sparse MoE (DeepSeek, Mixtral)	SSM Hybrid (JAMBA, Mamba)	Structured / Tokenless (Gemini, Hyena)	Dense Transformer (GPT-style)
Vector DB	~1.0 TB	~0.8 TB	~0.9–1.0 TB	~1.5–2.5 TB
KV Cache (active)	~1.1–1.5 TB	~0.6–0.8 TB	~0.8–1.2 TB	~2–3 TB
Embeddi ng Store	~0.8 TB	~0.5 TB	~0.6–0.9 TB	~1.2 TB
Total (approx.)	~3.0–3.3 TB	~1.9–2.1 TB	~2.3–3.1 TB	~4.9–6.7 TB

Inference Latency matters: Optimizations, Parallel File systems are a MUST HAVE

Innovations

Model Pruning + Quantization

LLMs: Memory Bound

Layer Name	OPs	Memory	Arithmetic	Max	Bound
		Access	Intensity	Performance	
			Prefill		
q_proj	69G	67M	1024	155T	compute
k_proj	69G	67M	1024	155T	compute
v_proj	69G	67M	1024	155T	compute
o_proj	69G	67M	1024	155T	compute
gate_proj	185G	152M	1215	155T	compute
up_proj	185G	152M	1215	155T	compute
down_proj	185G	152M	1215	155T	compute
qk_matmul	34G	302M	114	87T	пстогу
sv_matmul	34G	302M	114	87T	memory
softmax	671M	537M	1.25	960G	memory
norm	59M	34M	1.75	1T	memory
add	8M	34M	0.25	192G	memory
		I	Decode		
q_proj	34M	34M		768G	memory
k_proj	34M	34M		768G	memory
v_proj	34M	34M		768G	memory
o_proj	34M	34M		768G	memory
gate_proj	90M	90M		768G	memory
up_proj	90M	90M		768G	memory
down_proj	90M	90M		768G	memory
qk_matmul	17M	17M	0.99	762G	memory
sv_matmul	17M	17M	0.99	762G	memory
softmax	328K	262K	1.25	960G	memory
norm	29K	16K	1.75	1T	memory
add	4K	16K	0.25	192G	memory

<u>LLM Inference Unveiled: Survey and Roofline</u> Model Insights

Accuracy Loss, expensive Retraining

Lossless HW accelerated (de)compression

1.5X Model compression

High Bandwidth Flash

Combine compression with HBF to go from 3TB to 6TB?

https://investor.sandisk.com/events/event-details/future-fwd-sandisk-2025-investor-day

Innovations

Neocloud GPU rental margins race to the bottom

storage component providers buried in the value chain

Business Model Innovation required Move up value chain

Summary/ Call to Action

Summary:

Inference /RAG dominates Enterprise AI deployments

Storage / memory technologies emerging to match use cases

Call To Action:

Partner to jointly innovate around new storage/memory technologies, business models

