

# How AI Growth Will Drive HBM Demand Beyond 2025: Shaping Product Evolution and Market Dynamics

Presenter: Ellie Wang/Analyst

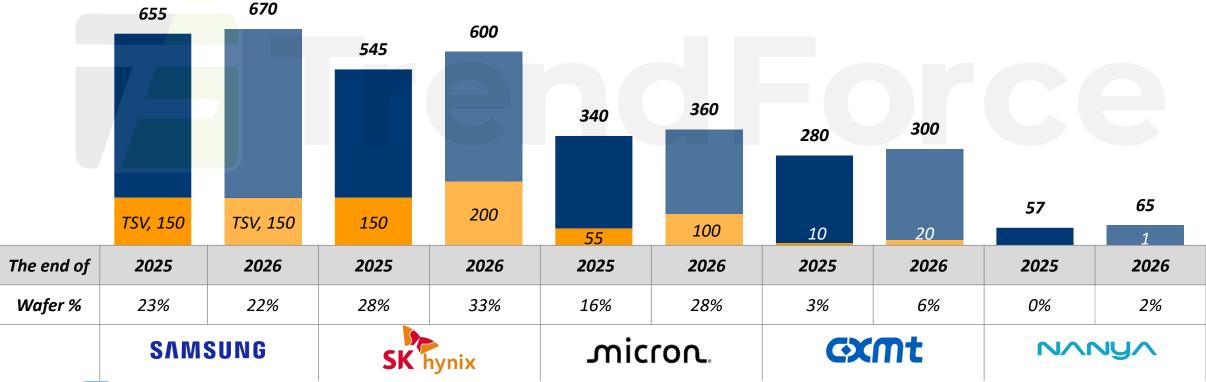








Demand

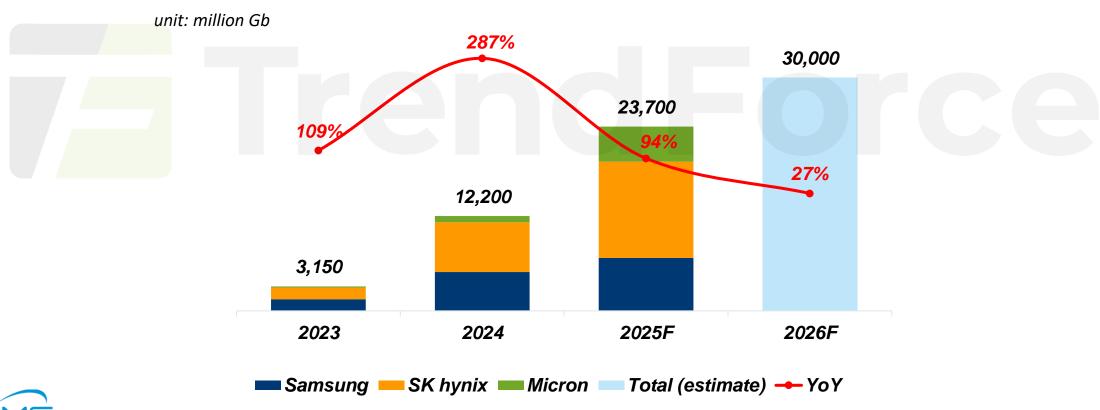

ASP and Revenue



# Suppliers Will Concentrate on HBM in Their Capacity Expansions in 2026

- Competition for HBM market share will intensify during 2025; HBM4 will be the key for 2026.
- The ratio of TSV over global capacity is expected to increase from around 19% at the end of 2025 to around 23% at the end of 2026.
- □ CXMT leads in DRAM capacity expansion, but its presence in the HBM market will remain small due to challenges related to R&D.

*Unit: Average k Wafers/Month* 






# SK hynix and Micron Are Major Contributors to HBM Supply Growth

- □ Suppliers are actively expanding HBM shipment bits for 2025 by investing in TSV and stacking capacities.
- □ After an explosive growth in 2024, the HBM market will likely see a milder growth rate for shipment bits in 2025 and 2026.
- □ SK hynix continues to lead the HBM market in terms of supply, while Micron's market share is expected to reach the high teens by 2025.

### **HBM Shipment Bits and Annual Growth Rate**







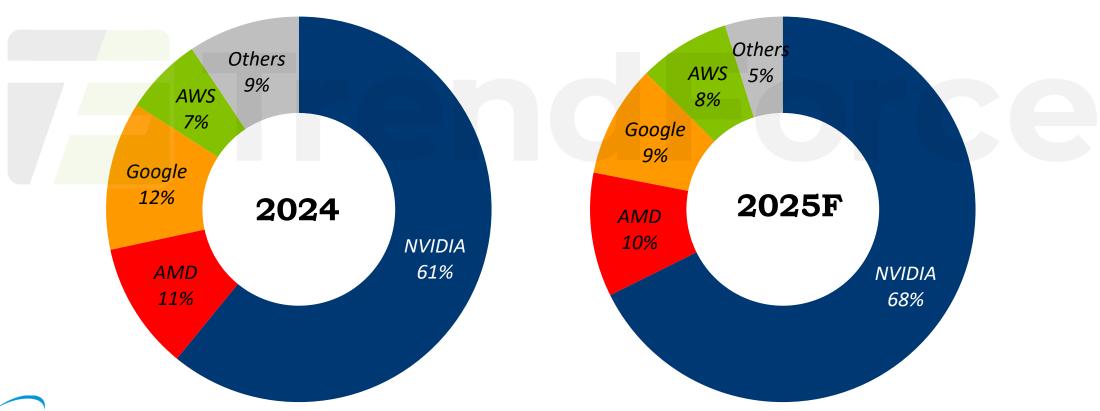
## NVIDIA vs. AMD – AI Chip Roadmaps and HBM Specifications

| Company        | AI Chip         | 2024                                          |                           |           |                     | 2025F                           |             |                     |                            | 2026F               |                  |             |            |
|----------------|-----------------|-----------------------------------------------|---------------------------|-----------|---------------------|---------------------------------|-------------|---------------------|----------------------------|---------------------|------------------|-------------|------------|
|                |                 | 1Q24                                          | 2Q24                      | 3Q24      | 4Q24                | 1Q25                            | 2Q25        | 3Q25                | 4Q25                       | 1Q26                | 2Q26             | 3Q26        | 4Q26       |
| <b>ONDIA</b> . | H100            | <u>HBM3 8hi</u> 8                             | 80GB (16GB                | *5)       |                     |                                 |             |                     |                            |                     |                  |             |            |
|                | GH200 (CPU+GPU) | HBM3e 8hi                                     | 141GB <mark>(24</mark> 0  | GB*6)     |                     |                                 |             |                     |                            |                     |                  |             |            |
|                | H20             | <u>HBM3/3e 8hi</u> 96GB/144GB (16GB*6/24GB*6) |                           |           |                     |                                 |             |                     |                            |                     |                  |             |            |
|                | H200            |                                               |                           | HBM3e 8hi | 141GB (24G          | iB*6)                           |             |                     |                            |                     |                  |             |            |
|                | B200            |                                               |                           | НВМ       | <u>3e 8hi</u> 192Gi | B (24GB*8)                      |             |                     |                            |                     |                  |             |            |
|                | GB200 (CPU+GPU) |                                               |                           | HBM       | <u>3e 8hi</u> 192/3 | 884GB <mark>(24G</mark> B       | 3*8 /192GB* | (2)                 |                            |                     |                  |             |            |
|                | B300            |                                               |                           |           |                     |                                 | HBM         | <u>3e 12hi</u> 2880 | GB (36GB*8)                |                     |                  |             |            |
|                | GB300 (CPU+GPU) |                                               |                           |           |                     |                                 | НВМ         | 3e 12hi 288/        | ′576GB <mark>(36G</mark> i | B*8/288GB*          | 2)               |             |            |
|                | R100            |                                               |                           |           |                     |                                 |             |                     |                            | <u>HBM4 12hi</u>    | 288GB (366       | iB*8)       |            |
| AMD            | MI200           | HBM2e 8hi                                     | 128GB ( <mark>16</mark> 0 | GB*8)     |                     |                                 |             |                     |                            |                     |                  |             |            |
|                | МІЗООХ          | <u>HBM3 12hi</u>                              | 192GB <mark>(24</mark> 0  | GB*8)     |                     |                                 |             |                     |                            |                     |                  |             |            |
|                | MI325X          |                                               |                           |           | <u>HBM3e 12h</u>    | <u>i</u> 256GB <mark>(36</mark> | GB*8)       |                     |                            |                     |                  |             |            |
|                | MI350           |                                               |                           |           |                     |                                 | НВМ         | 3e 12hi 288         | GB (36GB*8)                |                     |                  |             |            |
|                | MI375           |                                               |                           |           |                     |                                 |             |                     | HBM.                       | <u>3e 12hi</u> 2880 | GB (36GB*8)      |             |            |
|                | MI400           |                                               |                           |           |                     |                                 |             |                     |                            |                     | HBM <sup>2</sup> | 4 12hi 288G | B (36GB*8) |



### CSP's Respective Progress in Development of In-House Chips

□ Google and AWS are among the first CSPs to adopt in-house designed AI chips.


| CSPs        | AI Chip Name     | Partner     | Memory Type | Capacity per<br>Chip (GB) | Chip QTY | Total<br>Capacity | Launch     |
|-------------|------------------|-------------|-------------|---------------------------|----------|-------------------|------------|
|             | TPU v3/v4        | Broadcom    | НВМ2        | 4                         | 2        | 8                 |            |
|             | TPU v3/v4        | Broadcom    | НВМ2        | 8                         | 4        | 32                |            |
|             | TPU v5 Inference | Broadcom    | НВМ2е       | 8                         | 2        | 16                | 2H23       |
| Googla      | TPU v5 Training  | Broadcom    | НВМ2е       | 16                        | 6        | 96                | 2H23       |
| Google      | TPU v6 Inference | Broadcom    | НВМ3        | 16                        | 2        | 32                | 2H24       |
|             | TPU v6 Training  | Broadcom    | НВМ3е       | 24                        | 8        | 192               | 1H25       |
|             | TPU v7 Inference | MTK         | НВМ3е       | 36                        | 6        | 216               | After 2026 |
|             | TPU v7 Training  | Broadcom    | НВМ3е       | 36                        | 8        | 288               | After 2026 |
|             | Inferentia v1    | Alchip      | DDR4        | 4                         | 2        | 8                 |            |
| OVAC        | Trainium v1      | Alchip      | НВМ2е       | 16                        | 2        | 32                |            |
| aws         | Inferentia v2    | Alchip      | НВМ2е       | 16                        | 2        | 32                | 2H23       |
|             | Trainium v2      | Marvell     | нвм3/нвм3е  | 24/36                     | 4        | 96/144            | 1H25       |
|             | Trainium v3      | Alchip      | НВМ3е       | 36                        | 6        | 216               | 2H25       |
| Microsoft   | Maia v1          | GUC         | НВМ2е       | 16                        | 4        | 64                | In 2024    |
| IVIICIOSOIT | Maia v2          | Marvell/GUC | НВМ3е       | 24                        | 4        | 96                | After 2026 |
|             | MTIA v1          | Broadcom    | LPDDR5      | 8                         | 16       | 128               | In 2024    |
| VVIVIELU    | MTIA v2          | Broadcom    | LPDDR5      | 16                        | 16       | 256               | After 2025 |



# **NVIDIA Accounts for Largest Share of HBM Consumption Due to Superior Performances of Its Products**

- □ NVIDIA is striving to enhance product performance and widen the gap against its competitors by taking the lead in HBM qualifications.
- □ AMD has a substantial procurement volume, but an analysis of its product shipments shows that its share of overall HBM consumption remains relatively small.
- □ CSPs continue to develop AI ASICs, with Google being the most proactive in terms of efforts.

### Distribution of HBM Demand Among AI Chip Makers, Based on Chip Shipments

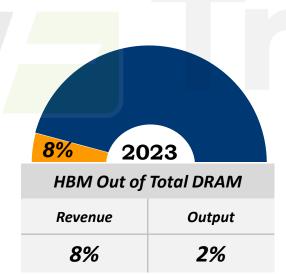


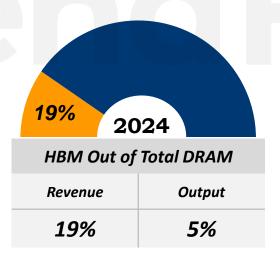


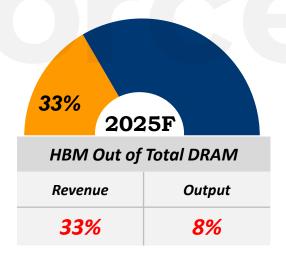
### Projection on HBM Prices, 2022-2025

- ☐ HBM prices are negotiated annually.
- □ The rise in blended ASP (average selling price) was mainly driven by the rising proportion of HBM3e in 2024.
- □ Currently in 2025, the mass production of HBM3e 12hi will drive up the proportion of HBM3e, thus leading to a YoY increase of 20.8% in blended ASP.

|                 | HBM Price (USD/Gb) |       |      |       |  |  |  |  |  |
|-----------------|--------------------|-------|------|-------|--|--|--|--|--|
|                 | 2022               | 2023  | 2024 | 2025F |  |  |  |  |  |
| HBM Blended ASP | 1.40               | 1.38  | 1.49 | 1.80  |  |  |  |  |  |
| YoY             |                    | -1.3% | 8.0% | 20.8% |  |  |  |  |  |


Note: Calculations consider HBM demand from AI chips and procurements related to inventory preparation.





# Driven by AI, Strong HBM Growth Expected to Continue into 2025

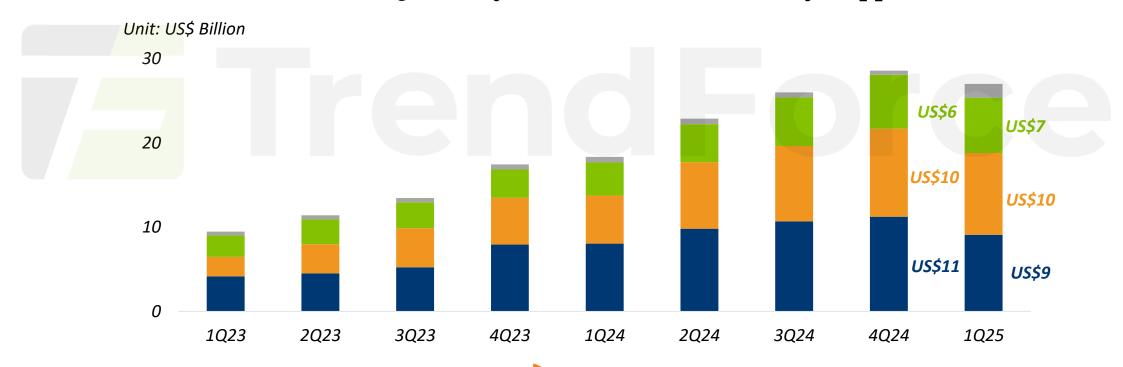
- □ Samsung has not yet proven to be a reliable supplier for HBM3e. AI chip makers tend to purchase more HBM than their real consumption so as to secure enough supply. Therefore, HBM supply will remain tight during 2025.
- □ HBM output is expected to double, and the ASP is anticipated to rise with increased HBM3e penetration. Hence, revenue from HBM is projected to make up more than 30% of the total DRAM revenue for 2025.
- □ Delay in Samsung's HBM3e qualification has led to a milder growth in both HBM bit output and revenue for the year 2025, reflecting a downward revision to our initial projections made in early 2025.

# Percentages Held by HBM Products in Total DRAM Bit Output and Total DRAM Revenue, 2023-2025







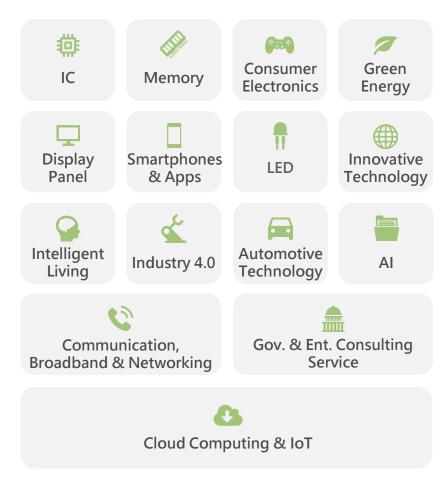



# HBM Revenue Contribution Reshapes the DRAM Market Share

■ SAMSUNG

- □ Thanks to the contributions from HBM sales, the top three DRAM suppliers have seen significant revenue growth over the past two years.
- □ Although Samsung had long been the DRAM revenue leader due to the scale of its production capacity, SK hynix managed to overtake Samsung in 1Q25 and has risen become the industry's leader in terms of revenue market share. SK hynix's achievement is attributed to the continuous growth of HBM-related revenue.

### Distribution of Quarterly Total DRAM Revenue by Supplier










#### TrendForce & TRI Research Areas



#### Sales & Services

#### Semiconductor Research

DRAM, NAND Flash, Foundry

SR<sub>MI</sub>

SR\_MI@TrendForce.com

#### **Green Energy Research**

Solar PV

GER MI

GER\_MI@TrendForce.com

#### **Optoelectronics Research**

Micro LED, Mini LED, VCSEL, UV, Video Wall, Lighting

OR\_MI

OR\_MI@TrendForce.com

#### **Display Research**

TFT-LCD, OLED, Smartphone, Tablet, NB, Monitor/AIO, TV

DR\_MI

DR\_MI@TrendForce.com

#### **ICT Application Research**

Communication & Broadband, Consumer Electronics, Innovative Technological Applications, Automotive, Industry 4.0, Gov. & Ent.

TRI\_MI

TRI\_MI@TrendForce.com

# Thank You

To find out more about TrendForce, scan the QRCode below.

Or visit the URL for further information.









Traditional Chinese www.trendforce.com www.trendforce.com.tw



**Simplified Chinese** www.trendforce.cn