

Emerging Trends in Automotive Fabrics and Data Security

Junjian Zhao, Sr. Manager, Technical Marketing Monolithic Power Systems Junjian.Zhao@monolithicpower.com

What's Different When Memory Goes Into Cars?

- Lifetime 10-15 years
- Harsh thermal & electrical environment: -40°C to 125°C,
 - transient surges, EMC (Electromagnetic Compatibility)
- ASIL (Automotive Safety Integrity Level) requirements
- Supply chain & update cycles are slow -> security must be
 - resilient from Day 1

High Performance Computing Puts Memory at the Heart of the Car

Premium Digital Cockpit, or L2+ / L2++ / L3 ADAS

Ultra-Premium Digital Cockpit, and L4 / L5 Autonomous Drive

Transforming into Software-Defined Vehicle (SDV)

the Future of Memory and Storage

- Flexibility
- OTA Upgradability
- HW & SW Ecosystem
- Ubiquitous Connectivity
- SaaS / App Marketplace
- Big Data
- Faster SW Development

The Emerging Attack Surface in SDVs

- Zonal architecture and Centralizes compute, making memory central to vehicle operation
- More memory usage → more potential attack surfaces
- SDVs mean OTA updates, frequent reconfigurations → DDR must maintain security long-term

Zonal architecture

Memory Security Gaps

Spoofing

Row hammer

Unauthorized access

Man-in-themiddle

SPDM: A Good Start, but Not Sufficient

- SPDM = Platform Security Protocol (used for auth & secure messaging)
- Works well in servers, but still spoofable in some cases (e.g., cloned serials)
- Requires frequent updates → requalification headache in automotive

Table 2 Test #	A2	A3	¥	A5	A6	2	B2	88	5	22	ខ	2	ន	ဗ	5	02	23	4	20	E	E	4	E2	E7	63	E3	핆		કું કુ	ß	95	67	8	٠	Highly Recommended
Test Abbreviation	뫒	Q Y	ဥ	PTC	HTSL	HTOL	ELFR	EDR	WBS	WBP	S	8	SBS	_	EM	тоов	豆	NBTI	SM	HBM	СОМ	3	ED	CHAR	EMC	သွ	SER	51	МЕСН	DROP	1	SQ	W	A B	For symbol rework, new cure time, to
DESIGN	·		Ė	_	_	_	_				-	_	-	_	_	_	_	_	-	_			_	_	_	-			_	_		_	_	C	
Active Element Design		•	•	М	Т	•	•	DJ	П			П			D	D	D	D	D	•	•	•	•	•	•	•	•	Т		F				D	
Circuit Rerouting	-		Α	М	-	-							$\overline{}$						\neg	•	•	•	•	•	•	•	\neg	\neg						E	Thickness only
Wafer Dimension / Thickness	-	-	Е	М	-	•	•	-	E	Е	-	-	$\overline{}$		П			•	\neg	Е	Е	Е	•				\top	\neg						F	MEMS element only
WAFER FAB	_	_	_	_	_	_			_		_			_	_						_			_			_	_				_	_	Ġ	
Lithography	•		•	М	Т	•	G	Т	•	•	П	Т	П					•	Т		П		•				Т	Т						Ιñ	Hermetic only
Die Shrink	•	•		М	-	•	•	DJ	-		-	-	$\overline{}$		•	•	•	•	•	•	•	•	•	•	•	•	•	\neg		-			$\overline{}$	J	EPROM or E ² PROM
Diffusion/Doping				М	\vdash	•	G	-	\vdash				$\overline{}$		П			•	\neg	•	•	•	•	•			\neg	\neg						ĸ	Passivation only
Polysilicon			•	М	\vdash	•		DJ	\vdash				$\overline{}$		\Box			•	\neg	•	•	•	•	•			\neg	\neg							,
Metallization / Vias / Contacts	•	•	•	М	\vdash	•		-	•	•	$\overline{}$		$\overline{}$		•			\Box	•		\neg		•	•		•	\neg	\neg						۱ ⊦.	For Pb-free devices only
Passivation / Oxide / Interlevel Dielectric	к	к	•	М		•	GN	DJ	к	•						•	•	•	•	•	•	•	•	•			\top							M N	
Backside Operation			•	М	П	•		П	П			П	П						\neg	М	М	•	П	•			Т	Т	Н			Н		l Q	Wire diameter decrease
FAB Site Transfer	•	•	•	М	П	•	•	J	•	•		П	П		•	•	•	•	•	•	•	•	•				Т	\neg	Н			Н		т	For Solder Ball SMD only
ASSEMBLY																																		1	
Die Overcoat / Underfill	•	•	•	М	•	•		П	П			П	Г					П	П		П	\neg				П	•	Т					Н		
Leadframe Plating	•	•	•	М	•	Т		П		С	•			•	П													L				Н			
Bump Material / Metal System	•	•	•	М	•	•						•	•														•	L							
Leadframe Material		•	•	М	•					•	•	•		•												•	Т	L	Н			Н			
Leadframe Dimension		•	•	М							•	•		•												•	\neg	L	Н						
Wire Bonding	•	•	•	Q	•				•	•									П				М			•	Т	Т	Н						
Die Scribe/Separate	•	•	•	М	Т	П		П	П			П	П					П	\neg		П	\neg	П			П	Т	T							
Die Preparation / Clean	•	•		М	П	•		П	•	•		П	П		П				\neg		\Box	\neg	П				Т	\neg				Н			
Package Marking				П	Т	Т		П			В				П				\neg								\neg	\neg							
Die Attach	•	•	•	М	Т	•		П	П			П			П				\neg		\Box		•			•	\neg	L	Н			Н	Н		
Molding Compound	•	•	•	М	•	•	•	П	П		•	•		•	П				\neg		\Box						•	L							
Molding Process	•	•	•	М	•	•		П	П		•	•		•	П				\neg								\neg	L							
Hermetic Sealing		Н	Н	П	Н	Т		П	П			Н	П	Н	П			\Box	\neg		\neg						\neg	\neg	Н		Н		Н		
New Package	•	•	•	М	•	•	•		•	•	•	•	Т	•						•	•		•			•	\neg	L	Н			Н	Н		
Substrate / Interposer	•	•	•	М	•	•		Г	•	•		Г	Т														T	L	Н			Н	Н		
Assembly Site Transfer	•	•	•	м	-	•	•		•	•	•	•	Т	•					\neg		\neg	\neg	•				\neg	L	Н			н	н	ı	

Post-Quantum Threats: Why Automotive Might Be First

- Cars shipping in 2025 may still be on the road in 2040
- PQC-ready hardware for memory encryption and secure boot will likely appear in robotaxi first
- Memory vendors need to consider future-proofing hardware-level encryption/latency tradeoffs

The Missing Link Between SoC and Memory

- Today, Memory has no strong identity verification at boot
- If compromised, SoC can't distinguish genuine vs. spoofed memory
- Need a new trust anchor—closer to the physical connection

Power, Once an Afterthought, Can Make Data Security

- PMICs already sequence memory power, control I3C
- Natural location to enforce security policies before memory is accessible
- Low-level access = strong control point

PMIC with Embedded SPDM + PQC

- PMIC performs SPDM handshake with host and memory
- Can store certified hash keys, implement PQC algorithms
- Allows memory access only after authentication passes

Benefits for Memory Vendors

- Offloads SPDM/PQC complexity from memory module
- No need to requalify DIMMs or SSDs every security cycle
- Security can be upgraded via PMIC firmware, not hardware redesign
- Enables modular design for automotive and edge

Shield from malicious breach cyberattacks

Where This Applies First

SSDs for automotive: high requalification cost → prime market DDR5/LPDDR for SDV SoCs: high-speed + security need

The Security Landscape Is Not Yet Developed

Recap

PMIC with Embedded SPDM + PQC

Collaboration for a future-ready, secure memory for automotive

Thank You – Let's Connect

Junjian Zhao, Sr. Manager, Technical Marketing Monolithic Power Systems Junjian.Zhao@monolithicpower.com

Online at MonolithicPower.com

Webinars & Videos

App Notes / White Papers

SoC Reference Designs

