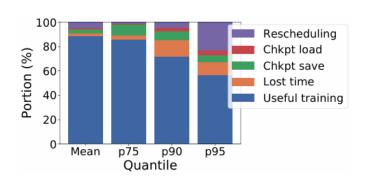
F A D U


Sustaining High-Speed LLM Checkpointing with FDP

Heechul (Fletcher) Chae, Product Planning Lead, FADU

Motivation

As LLM model size grow, checkpoints impact overall training time.

- Checkpoint operations typically consume around 12% of training time, with worst-case scenarios reaching up to 43%.

Model	parameters	Checkpoint Size (approx.)
GPT	1T	13.8TB
PaLM	540B	6TB
LLaMA	544B	7TB

High-speed storage could close the gap.

- In DGX H100 node,

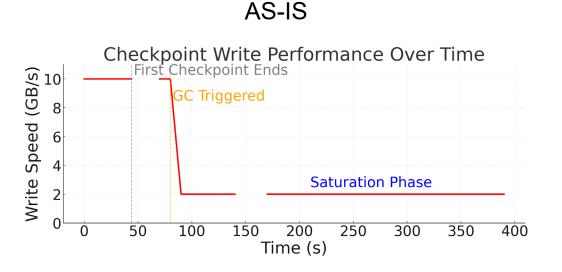
$$4 \times \text{Gen5} \text{ NVMe SSD } (10 \text{ GB/s each}) = 40 \text{ GB/s}$$
 write bandwidth

- If training a GPT model with a checkpoint size of 13.8TB using 8 DGX nodes:

$$\frac{13.8 \text{ TB}}{8 \times 40 \text{ GB/s}} = \textbf{43.1} \text{ seconds} \quad \Rightarrow \text{Checkpoint duration} \approx 44 \text{ s}$$

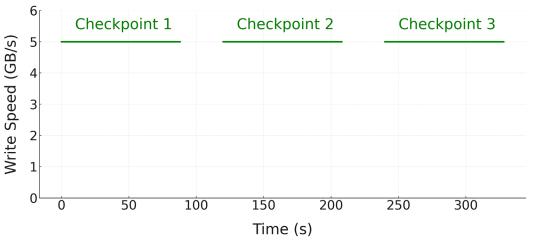
High-speed writes are hard to maintain when mixed data lifecycles collide:

- A Portion of training dataset or metadata may be co-located with checkpoints → potential GC trigger
- Checkpoints with different lifecycles (e.g., latest, best, manual) may be mixed → future fragmentation risk.


Challenges in Maintaining Consistent Write Performance

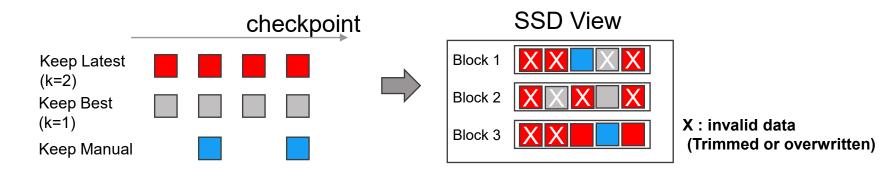
Problems

- Mixed data types(Partial dataset, Metadata, checkpoint data) are physically co-located on SSD
- Garbage Collection (GC) is triggered more frequently, it leads to inconsistent write throughput
- Not only does it slow checkpoint speed, but it also leads to unpredictable training latency and poor QoS.


Solutions with FDP reclaim group

- 2 of 4 reclaim groups were dedicated to checkpointing, while random writes ran on the remaining 2 without impacting performance.
- As a result, we observed that checkpoint performance remained consistent, thanks to effective isolation by the reclaim groups.

Consistent Checkpoint Write Performance with Reclaim Group Isolation



Not All Checkpoints Live the Same

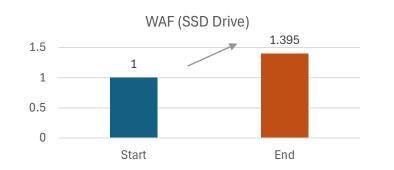
- Checkpoint lifecycles differ by training configuration.
 - Some are short-lived (e.g., rotated, overwritten)
 - Others persist long-term (e.g., best checkpoints, manual saves)

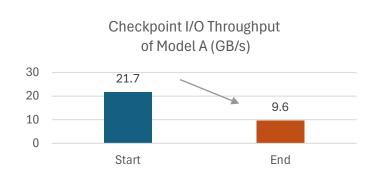
Туре	Purpose	Characteristics	Example Use Cases
Keep Latest	Resume training, crash recovery	Short-lived, frequently overwritten	Large-scale pretraining, unstable infra
Keep Best	Deployment, analysis, fine-tuning	Relatively Long-lived, metric-driven	Model serving, performance tracking
Keep Manual	Milestone checkpoints, versioning	Long-lived, irregular saving	Experiment logging, manual inspection

• Simultaneous checkpointing from multiple models can mix short- and long-lived data, leading to fragmentation and higher GC pressure.

Reproducing GC with Mixed Checkpoints

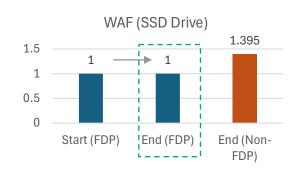
Demonstrate how mixed checkpoint types can trigger GC using the DLIO benchmark.

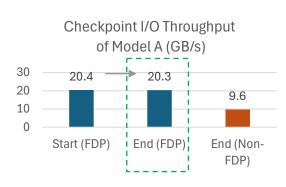

- DLIO do not support save policies (save_last, save_top_k, ...), so mimicked checkpoint types via save paths and other options.


Test Configuration

- Model for checkpoint: llama_7b_zero3
- Emulate three concurrent models writing checkpoints (for 4 hours)
 - Model A (**Keep Latest**): Continuously checkpoints to the **same folder**.
 - Model B (**Keep Best**): Checkpoints to the **same folder**, keeping **only one file** at a time.
 - Model C (Keep Manual): Saves each checkpoint to a new folder without deletion (one file per folder).
- All models write to the same RAIDO volume (4 × Gen5 FADU NVMe SSDs, ~40 GB/s peak)

Test Results (Non-FDP)


- WAF rose from 1.0 to 1.395, indicating GC activity. (WAF measured after 4 hours checkpointing)
- Checkpoint write speed dropped sharply once GC began.



Mitigating GC & Performance w/ FDP

- Different checkpoint types were isolated using FDP RUH assignments.
- Test Configuration (Drive setup for FDP)
 - DLIO does not support FDP, so it cannot assign a placement ID (Reclaim Unit Handle) to checkpoints.
 - Created 3 namespaces per drive and assigned one RUH to each namespace.
 - Configured RAIDO using the same namespace index across all drives.
 - Performed checkpointing of three different models on each namespace.
 - Model A (**Keep Latest**) to NS1 (5% of drive capacity)
 - Model B (**Keep Best**) to NS2 (10% of drive capacity)
 - Model C (**Keep Manual**) to NS3 (85% of drive capacity)
- Test Results (FDP)
 - **No GC occurred**, and **no performance drop** was observed. (during the 4-hour test.)

