Seamless Adoption of QLC HC-SSDs with LBS

August 6, 2025
Luis Chamberlain mcgrof.c@samsung.com
Principal Engineer

IU mapping table at a glance: an internal structure

The DRAM implications for HC-SSDs

Drive capacity	DRAM required with 4k IU	DRAM required with 16k IU	Savings by using 16k IU
7.67 TiB	7.67 GiB	1.92 GiB	5.75 GiB
15.34 TiB	15.34 GiB	3.84 GiB	11.05 GiB
30.68 TiB	30.68 GiB	7.67 GiB	23.01 GiB
61.44 TiB	61.44 GiB	15.36 GiB	46.09 GiB

Userspace recommendations for large IU without LBS

close(fd);

return -1:

```
#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
                                                          ret = posix_memalign((void **)&buf, ALIGN, sizeof(*buf) * BUF_SIZE);
#define KiB (1024)
#define BUF_SIZE (16 * KiB)
                                                          if (ret != 0) {
#define ALIGN (16 * KiB)
int main(int argc, char *argv[])
      int fd, ret:
      ssize_t num;
      char *path = "/dev/nvme0n1";
      char *buf;
      fd = open(path, O_DIRECT);
     if (fd < 0) {
            printf("Failed to open %s file\n", path);
            return -1;
      ret = posix_memalign((void **)&buf, ALIGN, sizeof(*buf) * BUF_SIZE);
     if (ret != 0) {
            printf("Failed to allocate memory\n");
            close(fd);
           return -1;
      num = read(fd, buf, BUF_SIZE);
     if (num == -1) {
            printf("Error reading a file %s\n", path);
           printf("READ num=%lu bytes\n", num);
      close(fd);
      free(buf);
      return 0:
```

- Requires userspace applications to be modified
- Each new IU increase implicates new modifications
- Not a suitable ecosystem choice

printf("Failed to allocate memory\n");

Figure 4. Code snippet showing example implementation of optimal I/O: direct I/O performed on raw block device that adheres to IU size and alignment recommendations (in this example IU is 16KiB in size)

Alternatives to requiring userspace changes

Lay of the land of what options we have

- 1. LBA format change \rightarrow likely not possible
 - 4 KiB LBA format introduced 1998
 - 4 KiB LBA Native format 4kn in 2010
 - Slow adoption
 - Requires new Protection Information protection changes
 - This alternative is not as ideal
- 2. Operating Systems R&D innovation: The Large Block Size moonshot goal

The Large Block Sizes moonshot goal

Goal: respect IU alignment using OS filesystem primitives

- Primitives:
 - mkfs.xfs -f -b size=16k
 - mkfs.xfs -f -b size=16k -s size=16k
- Would be ideal but people had tried for 16 years

The Large Block Sizes moonshot goal

Goal: respect IU alignment using filesystem primitives

- Primitives:
 - mkfs.xfs -f -b size=16k
 - mkfs.xfs -f -b size=16k -s size=16k Merged on v6.15

Merged on v6.12

Done

It was just an Operating Systems Filesystems and Memory Management Problem

What does LBS mean in practice?

For filesystems, and the QLC High-Capacity SSD market?

NVMe QLC with IU=NPWG=16k

NVMe QLC with IU=NPWG=16k and NAWUPF=16k

But are atomics useful?

Hyperscalers have been supporting large atomics for 6 years now Let's test on **AWS i4i.4xlarge** as a public baseline on TLC Leverage kdevops sysbench for reproducibility

Additional gains of large AWUPF: Disabling MySQL innodb_double_write_buffer 12 hour MySQL run \rightarrow you can reproduce with kdevops

Additional gains of large AWUPF: Disabling PostgreSQL full_page_writes 12 hour run → you can reproduce with kdevops

But are atomics useful?

Yes

An empirical evaluation of large atomics shows they are Useful even for TLC drives then

