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Takeaways

 Rapid increase in training dataset size and the variety of models to train will continue to put 
pressure on storage density, SSD capacities and throughput requirements

 With increasing demand for energy from datacenter/edge devices, there will be continued 
pressure to make storage energy-efficient

 DLRM is a key production model, and requires high-capacity and throughput from SSDs for 
training purposes

 We examine storage traces of
 DLRM Data Preprocessing (under discussions to be part of MLPerf Storage suite)

 DLRM Training (part of MLPerf Training suite)

 Storage trace analysis of AI workloads show evidences of 
 sequential read (write) accesses
 large payloads for reads and write commands

Call to Action
 ML Commons may want to consider creating a suite that places data preprocessing inline 

with DLRM training
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DLRM – Deep learning recommendation model

 Recommendation models are backbone for Meta, Netflix, Google etc.
Model parameters: a) MLP b) embedding tables One of Meta’s models has 12 trillion parameters
 Size of embedding tables is a key bottleneck and often tiered in host memory (DRAM) Meta’s embedding table is 96 TB  24 TB compressed
Models are trained on Petabytes of data in datacenters (Source: Meta)
 Raw training data (or click logs) must be pre-processed prior to DLRM training – time intensive and GPU may be used for 

acceleration 1 TB dataset takes 5000 seconds on CPU to be pre-processed 
Multiple DLRM models are maintained, and new models are continuously trained and developed

HDD

SSD Cache
Preprocess 

(CPU-based)

ZionEX Node
(8 GPUs = 320 

GB, 
4 CPUs w/ 1.5 

TB DDR)

ZionEX Node
(8 GPUs = 320 

GB, 
4 CPUs w/ 1.5 

TB DDR)

16 nodes

 24 TB Embedding table in DRAM
MLP parameters in HBM

 ~30 PB of training 
dataset

 Preprocess is time 
consuming

Training 
Architecture

Ref / Credit: Meta’s Tectonic Shift Papers

Preprocessing is inline with DLRM training
Storage and preprocessing can sometime consume more power than training
SSD Shift layer over the HDD Tectonic layer is introduced to deal with increase in ingestion bandwidth
Meta had explored clever data placement algorithms, data filtering algorithms, and preprocessing with 

GPUs to meet increasing ingestion demand

Takeaways
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DLRM Preprocessing w/ 
GPU

DLRM Preprocessing w/ 
CPU DLRM Training on GPU

Experimental Setup Preprocessed with 8 
GPUs (DGX A100)

Preprocessed with 2 64-
core CPUs

Trained with 8 GPUs (DGX 
A100) – batch size = 8K, # 

of batches = 64014

What’s in storage? Criteo click dataset in 
Gen. 4 drive 

Criteo click dataset in 
Gen. 4 drive

Preprocessed dataset in 2 
Gen. 4 drives (RAID0)

Run time (secs) 1900 5181 445

% Read Volume (# ) 72 (7.7M) 55 (17M) 100 (469K)

Perf. (MBps) 1500-6000Read
3000Write

500-6000Read
1800-3000Write

454Read

QD 250mean  10mean 1-11 4-5

Read Payload (KB) 51290% 51289% 51271%

Read – Sequential 
Volume % (persistence 
count > 50, multi-threaded)

43-55 50-90
 (in large portions of the trace)

68

Write Payload (KB) 128065% 128040% N/A

Write – Sequential 
Volume % (persistence

count > 50, multi-threaded)

85-95 90-99
 (in large portions of the trace)

N/A

Takeaways

1

2

4

3

5

3 Reads and write payloads are large1

4 Significant volume of read and write data is sequential2

5 Demands on storage can be time-variant – small MBPs to saturation 

DLRM Model

 Large DLRM model w/ 13 numerical, 26 
categorical, and 1 true label features

 Large DLRM model consumes ~132 GB of 
VRAM on GPU HBM  ~4 A100 GPU HBM 
capacity is required

Dataset  1 TB of raw data (Criteo Click 1 TB dataset)

Preprocessing

 Raw data  converted to parquet format  
categories represented with hash values is 
converted to contiguous integer 
representation  missing numerical feature 
values are zeroed  numerical feature values 
are normalized  370 GB of processed data 
in binary format

System & Tracing

 AMD EPYC 7742 128-Core Processor (2x64)
 NVIDIA A100 – 8x 40 GB
 NVMe Tracing using libpf

References

 https://github.com/NVIDIA/DeepLearningExa
mples/blob/master/PyTorch/Recommendatio
n/DLRM/README.md#model-overview

DLRM – Deep learning recommendation model

0

https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/Recommendation/DLRM/README.md#model-overview
https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/Recommendation/DLRM/README.md#model-overview
https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/Recommendation/DLRM/README.md#model-overview
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DLRM Preprocessing w/ GPU DLRM Preprocessing w/ CPU

Storage Trace 
Analysis

DLRM Preprocessing w/ GPU & 
DLRM Preprocessing w/ CPU

Takeaways

 GPU preprocessing is set up differently from CPU 
preprocessing

 In both runs, q-depths aren’t constant, there is 
significant variation across a run

 Note, LBA regions show visual evidence of sequential 
accesses
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Takeaways

 Rapid increase in training dataset size and the variety of models to train will continue to put 
pressure on storage density, SSD capacities and throughput requirements

 With increasing demand for energy from datacenter/edge devices, there will be continued 
pressure to make storage energy-efficient

 DLRM is a key production model, and requires high-capacity and throughput from SSDs for 
training purposes

 We examine storage traces of
 DLRM Data Preprocessing (under discussions to be part of MLPerf Storage suite)

 DLRM Training (part of MLPerf Training suite)

 Storage trace analysis of AI workloads show evidences of 
 sequential read (write) accesses
 large payloads for reads and write commands

Call to Action
 ML Commons may want to consider creating a suite that places data preprocessing inline 

with DLRM training
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Ref / Credit: John Mazie, Understanding Applications Through NVMe Driver Tracing Using BPF | SDC 2024 (sniadeveloper.org)

NVMe tracing happens in the block driver

https://www.sniadeveloper.org/events/agenda/session/533
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