Characterizing Data Ingest for Deep Learning Recommendation Model Training

Sundararajan (Sundar) Sankaranarayanan, Sayali Shirode

FMS 2024, 08/08/2024

© 2021 Micron Technology, Inc. All rights reserved. Information, products, and/or specifications are subject to change without notice. All information is provided on an "AS IS" basis without warranties of any kind. Statements regarding products, including statements regarding product features, availability, functionality, or compatibility, are provided for informational purposes only and do not modify the warranty, if any, applicable to any product. Drawings may not be to scale. Micron, the Micron orbit logo, the M orbit logo, Intelligence AcceleratedTM, and other Micron trademarks are the property of Micron Technology, Inc. All other trademarks are the property of their respective owners.

Content

Key Takeaways

Motivation – DLRM Scale & Significance

Storage Trace Analytics – Results

❖ Q & A

Key Takeaways

Takeaways	Rapid increase in training dataset size and the variety of models to train will continue to put pressure on storage density, SSD capacities and throughput requirements
	 With increasing demand for energy from datacenter/edge devices, there will be continued pressure to make storage energy-efficient
	DLRM is a key production model, and requires high-capacity and throughput from SSDs for training purposes
	 We examine storage traces of DLRM Data Preprocessing (under discussions to be part of MLPerf Storage suite) DLRM Training (part of MLPerf Training suite)
	 Storage trace analysis of AI workloads show evidences of sequential read (write) accesses large payloads for reads and write commands
Call to Action	 ML Commons may want to consider creating a suite that places data preprocessing inline with DLRM training

Deep Learning Recommendation Models – Scale & Significance

 SSD Shift layer over the HDD Tectonic layer is introduced to deal with increase in ingestion bandwidth
 Meta had explored clever data placement algorithms, data filtering algorithms, and preprocessing with GPUs to meet increasing ingestion demand

the Future of Memory and Storage DLRM – Deep learning recommendation model

Storage Trace Analysis – Summary (1/2)

DLRM Model	 Large DLRM model w/ 13 numerical, 26 categorical, and 1 true label features Large DLRM model consumes ~132 GB of VRAM on GPU HBM → ~4 A100 GPU HBM capacity is required
Dataset	1 TB of raw data (Criteo Click 1 TB dataset)
Preprocessing	Raw data → converted to parquet format → categories represented with hash values is converted to contiguous integer representation → missing numerical feature values are zeroed → numerical feature values are normalized → 370 GB of processed data in binary format
System & Tracing	 AMD EPYC 7742 128-Core Processor (2x64) NVIDIA A100 – 8x 40 GB NVMe Tracing using libpf
References	https://github.com/NVIDIA/DeepLearningExa mples/blob/master/PyTorch/Recommendatio n/DLRM/README.md#model-overview

DLRM – Deep learning recommendation model

Storage Trace Analysis	DLRM Preprocessing w/ GPU		DLRM Preprocessing w/ CPU	DLRM Training on GPU
0 Experimental Setup	Preprocessed with 8 GPUs (DGX A100)		Preprocessed with 2 64- core CPUs	Trained with 8 GPUs (DGX A100) – batch size = 8K, # of batches = 64014
What's in storage?	Criteo click dataset in Gen. 4 drive		Criteo click dataset in Gen. 4 drive	Preprocessed dataset in 2 Gen. 4 drives (RAIDO)
Run time (secs)		1900	5181	445
% Read Volume (#)		72 (7.7M)	55 (17M)	100 (469K)
Perf. (MBps)	5	1500-6000 _{Read} 3000 _{Write}	500-6000 _{Read} 1800-3000 _{Write}	454 _{Read}
QD	$250_{mean} \rightarrow 10_{mean}$		1-11	4-5
Read Payload (KB)	1	512 _{90%}	512 _{89%}	512 _{71%}
Read – Sequential Volume % _{(persistence} count > 50, multi-threaded)	2	43-55	50-90 (in large portions of the trace)	68
Write Payload (KB)	3	1280 _{65%}	1280 _{40%}	N/A
Write – Sequential Volume % _{(persistence} count > 50, multi-threaded)	4	85-95	90-99 (in large portions of the trace)	N/A
	1 3	Reads and write	payloads are large	
Takeaways	2 4	Significant volur	ne of read and write data is	sequential
		Demands on sto	orage can be time-variant – s	small MBPs to saturation

the Future of Memory and Storage

Storage Trace Analysis – Summary (2/2)

200

0

400

600

800 1000 1200

Time Slices (in secs)

1400

1600 1800 2000

Storage Trace	DLRM Preprocessing w/ GPU &
Analysis	DLRM Preprocessing w/ CPU
Takeaways	 GPU preprocessing is set up differently from CPU preprocessing In both runs, q-depths aren't constant, there is significant variation across a run Note, LBA regions show visual evidence of sequential accesses

Q & A

Takeaways	Rapid increase in training dataset size and the variety of models to train will continue to put pressure on storage density, SSD capacities and throughput requirements
	 With increasing demand for energy from datacenter/edge devices, there will be continued pressure to make storage energy-efficient
	DLRM is a key production model, and requires high-capacity and throughput from SSDs for training purposes
	 We examine storage traces of DLRM Data Preprocessing (under discussions to be part of MLPerf Storage suite) DLRM Training (part of MLPerf Training suite)
	 Storage trace analysis of AI workloads show evidences of sequential read (write) accesses large payloads for reads and write commands
Call to Action	 ML Commons may want to consider creating a suite that places data preprocessing inline with DLRM training

NVMe Trace

NVMe tracing happens in the block driver

- Collections information on every transaction in the nvme driver.
 - Starting LBA
 - Transaction Size/Length
 - Start Time/Completion Time/Latency
 - Process ID/Name
 - Device
 - Queue ID
 - Transaction Type
 - Read, write, flush, admin...

