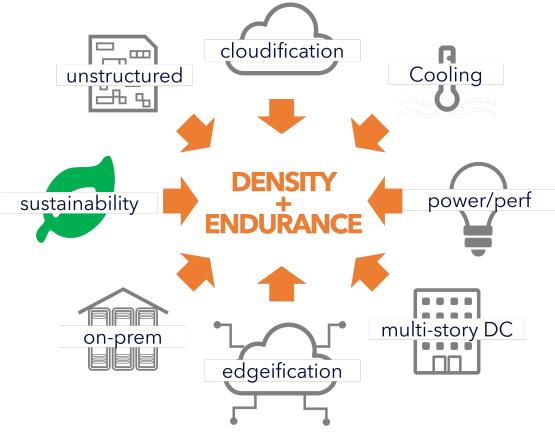


QLC in the Datacenter: Making the Optimal Choices

FMS

Aug. 08, 2024

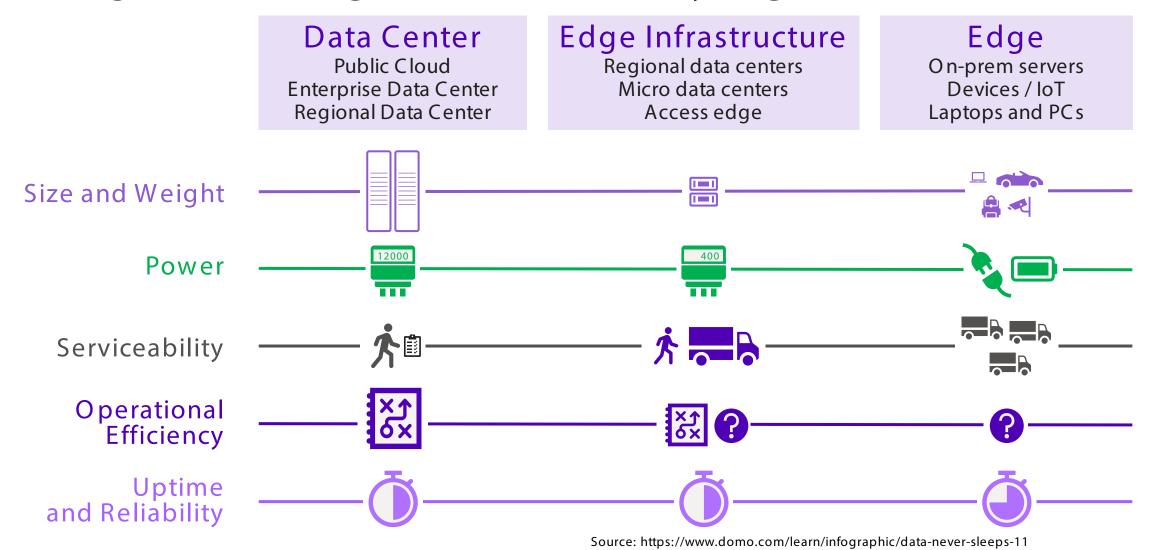
© 2024 Solidigm. All rights reserved.


Agenda

- Data Growth Trend
- Challenges facing Data Infrastructure
- General Workload Types within the Cloud and Enterprise space
- Product vs. Targeted Applications
- General Cost Analysis
- Solidigm QLC Portfolio

Storage Needs Are Not Abating

147ZB created in '23, growing to 181ZB in '25¹


1. Source: <u>https://explodingtopics.com/blog/data-generated-per-day</u>

Source: https://www.domo.com/learn/infographic/data-never-sleeps-11

Storage Challenges are Intensifying

QLC Adoption Growth and Acceptance

Dell Technologies Bolsters Dell PowerStore with Storage Performance, Resiliency and Efficiency Advancements¹

 "....QLC-based storage: Delivers enterprise-class performance at a lower cost per terabyte when compared to triple-level cell (TLC) models. Customers can start with as few as 11 QLC drives and scale up to 5.9 petabytes of effective capacity per appliance..."

QLC today leveraged on AFF C-SERIES

"Today's AI workloads are no longer latency sensitive they are bandwidth sensitive. Solidigm QLC SSDs deliver the performance, capacity and endurance needed to scale beyond for today's most data intensive AI usages."

~Ed Fiore, Vice President & Chief Architect

Data Direct Networks (DDN) has about 48 A1400x2 arrays supporting Nvidia's largest SuperPODs. Adding Solidigm QLC delivers both the best performance for Al usages, as well as extreme capacity. It uses 61.44 TB QLC SSDs enabling 1.45 TB capacity in a 2RU x 24-slot chassis, doubling capacity per watt compared to other 30 TB SSDs from other suppliers."

~Senior Vice President of Product, James Coomer

1. https://www.dell.com/en-us/dt/corporate/newsroom/announcements/detailpage.press-releases~usa~2024~05~20240521-dell-technologies-bolsters-dell-powerstore-with-storage-performance-resiliency-and-efficiency-advancements.htm#/filteron/Country:en-us

2. https://www.solidigm.com/content/dam/solidigm/en/site/products/technology/vast-data-customer-story/documents/vast-data-solidigm-case-study.pdf

VAST Data Leverages the Value of Solidigm SSDs to Redefine Storage²

https://www.netapp.com/blog/qlc-all-flash-arrays-data-center/

VAST

3. <u>https://www.netapp.com/blog/qlc-all-flash-arrays-data-center/</u>

Characterizing QLC against data patterns and block sizing

QLC selection must include a review of the combination of capacity, workload pattern, duty cycle and performance needs

Elements of QLC: Indirection Unit (IU) options for the Future of Memory and Storage broader deployment Solidigm D5-P5430 4KBIU Solidigm D5-P5336 **16KBIU** All writes \geq 16KB writes non 16KB-OR go directly to go directly to aligned write drive drive options write direct OR write¹ shaping all reads all reads D5-P5430 D5-P5336 D5-P5336 from host from host Drop-in value TLC replacement

Improved ease-of-adoption²

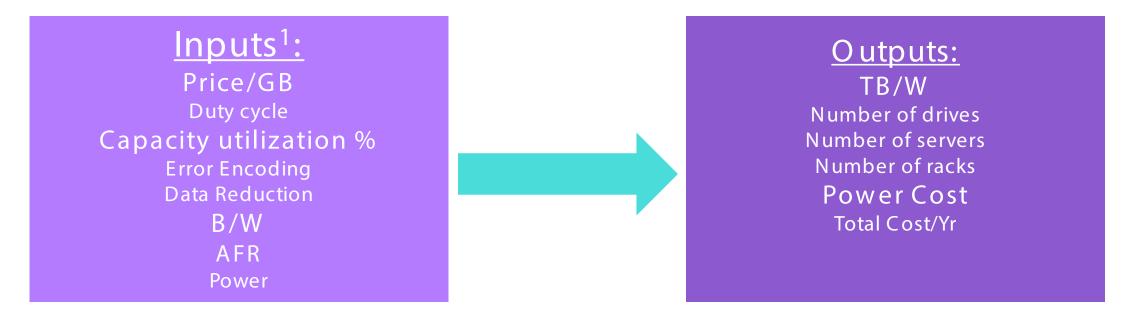
1. Direct write is optional for non-16KB-aligned writes. For further guidance please evaluate possible performance and endurance impacts using the endurance estimator tool: https://estimator.solidigm.com/ssdendurance/ 2. Comparing Indirection Unit (IU) size: D5-P5336 IU=16KB.

Analysis of Workloads- Areas for QLC

Туре	Workload/App ¹	Average R/W and Pattern Mix	Average Block Size	Avg. Queue Depth	QLC Leverage?
Enterprise Based	НРС	70/30 to 90/10; Seq Read (data load) ;Seq Write (de-stage)	16KB and higher	0-32	D5-P5430 or D5-P5336
	General Purpose	80/20; 80% sequential; 20% random	8-32KB	0-32	D5-P5430
	Database	70/30; primarily sequential	64KB-1MB	Varies	D5-P5430
	Decision Support System (DSS)	90/10 to 100/0; 80% sequential, 20% random	Large Block (up to 1MB)	0-4	D5-P5336
	Cloud Compute	65/35; ~80% Random	8KB	0-32	With Write Shaping
C loud Based	Content Delivery Network (CDN)	Up to 95% Read; Random Reads; Seq Writes when present (writes limited to low use periods)	Very Large Block (majority ≥128KB)	0-64	D5-P5336
	Social	68.7/31.3; Random	87.6KB - object 11.3KB - metadata	0-32	D5-P5430 / D5-P5336
	eCommerce	67/33; Primarily Random (driven by high concurrency)	Small Block (2-8KB or 16KB)	0-32	With Write Shaping
	Server-based Storage	70/30; Random	4KB	0-16	With Write Shaping
Al Specific (Core or Near Edge)	Ingest	100% writes; Sequential, though multi-streams present as random	Varies; Block sizes aligned to framework	32-128	Suboptimal
	Training	95/05; Random	Block sizes aligned to frameworks	0-64	Suboptimal
	Checkpointing	~100% Writes; Mostly sequential	32-128KB	0-64	D5-P5430 or D5-P5336
	Inference	Read intensive, writes during model feedback; Mostly Sequential	4-128KB	0-64	D5-P5430 or D5-P5336
	Data Lakes	Mixed from 100% Read to 100% write Variable random to sequential	Variable	0-32	Hybrid: SLC cache+ D5-P5336

1 Source: Solidigm, based on a combination of Intel analysis and publicly available storage workload research material.

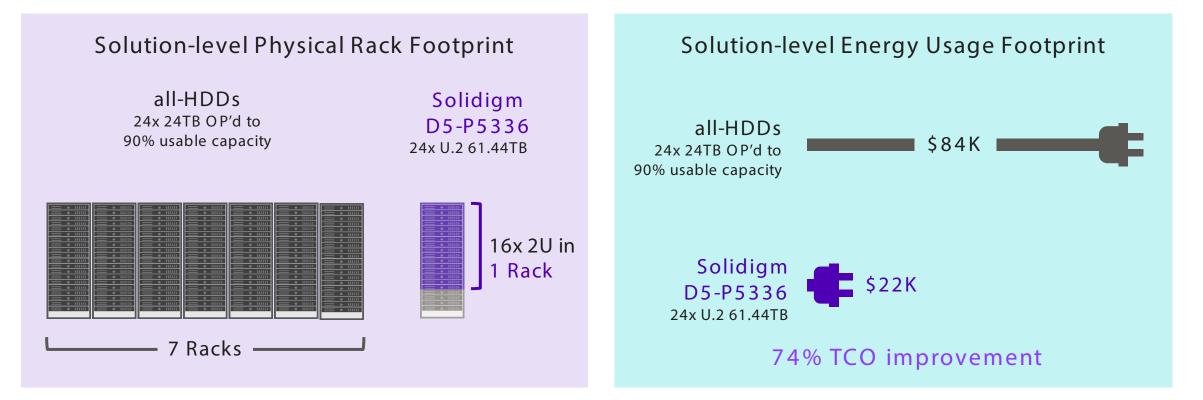
Dedicated Swim Lanes Target Applications


Endurance	Swimlanes ¹	Target Applications and Usages Examples				
> 140 PBW (Ran. or Seq.) 50 DWPD	<u>D7-P5810</u> Very Write-centric			□HPC		
65/134 PBW (Ran./Seq.) 3 DWPD	D7-P5620/PS1030 Write-centric and mixed	□Caching □High Freq. Trading	□Cloud Compute	□OLTP (small block, high duty cycle)		
28/134 PBW (Ran./Seq.) 1 DWPD	D7-P5520/PE1010 Mixed and mainstream	□Al ingest □Al preparation □Database	□Decision Support Systems	□eCommerce □OLTP (variable block, low duty cycle)	□Cloud Storage □Data Analytics	
32/105 PBW (Ran./Seq.) 0.5+ DWPD	<u>D5-P5430</u> Mainstream and read-intensive		DLAP		□Email and UCC □General Purpose Server □Server-based Store □VDI	
65/213 PBW (Ran./Seq.) 0.2+ DWPD	<u>D5-P5336</u> Capacity optimized	□Content Delivery Network				

1. All DWPD values assumes a 100% random write workload

QLC and TCO Considerations

Operational Analysis of Data Center system costs must drive spending decisions



1. Key inputs listed, but not exhaustive.

Higher Density Delivers an Improved Sustainability Footprint

Solidigm D5-P5336 vs all-HDD in a 10 Petabyte Object Storage Solution

Massive density delivers meaningful sustainability benefits

Expanded Higher Density QLC Portfolio

the Future of Memory and Storage

- Storage challenges are driving a need for high throughput, high density, low power solutions (i.e., TB/w vs. BW/w)
- Storage matters more data, higher XPU utilization, server TCO optimization is critical
- Not all QLC storage is equally up to the task depending on application
- Solidigm has the portfolio and partnerships to help!

Appendix 2: Solidigm D5-P5336 TCO Calculations

SOLIDIGM D5-P5336 VALUE vs. 24TB HDD

Storage Solution deployment parameters assume 42U rack capacity, 33U available for storage, 2U servers @ 12x 3.5" HDDs, and 24x P5336 SSDs per server, respectively. 90% usable capacity assumed for both drives. HDD refresh cycle = 4 years. Calculated duty cycles to deliver equivalent throughput per TB: 20% for HDD array, 4.4% for all-QLC solution. RAID 1 mirroring used for QLC; all-HDD uses Hadoop triplication.

All-QLC configuration:

Solidigm D5-P5336, 61.44TB, 90% capacity utilization, 7000 MB/s throughput, 24W average active power, 5W idle power; See details at <u>Soldigm D5-P5336 QLC SSD</u> (solidigm.com)

HDD configuration:

Seagate EXOS X24 24TB 3.5" SAS HDD ST120000NM002D (datasheet), 90% capacity utilization, 'short-stroked' throughput estimated at 400 MB/s; 9.8W average active power, 6.5W idle power

Key common assumptions : Power Cost = \$0.15/KWHr; PUE factor = 1.60; Empty Rack Purchase Cost = \$1,200; System Cost = \$10,000; Rack Cost for Deployment Term = \$171,200. Calculations based on Solidigm TCO estimations as of July 2024. TCO calculations based on internal Solidigm TCO tool.