SAMSUNG

SPDK State of the Project

Jim Harris

Principal Engineer - Open Source, R&D - DTC Samsung Semiconductor

Overview

- SPDK codebase continues to be active
 - >1500 patches since September 2023 release
- SPDK contributors continue to be varied
 - Almost 100 contributors from 25+ companies
- Key areas of development (recent and ongoing)
 - Accelerators and memory domains (Ben!)
 - Power savings
 - NVMe over Fabrics
 - Logical volumes and RAID
 - Tracing
 - NUMA

Power Savings

- Two avenues towards power savings
 - Schedulers and Governors
 - Interrupt Mode

Schedulers and Governors

- More sophisticated scheduling algorithms
- Scheduling period preemption
- Better amortization of TCP syscall overhead across multiple spdk_threads

Interrupt Mode

- Plumb SPDK socket layer for interrupts
- Add interrupt support to NVMe target (TCP, RDMA)
- Add PCIe device interrupt support to SPDK NVMe driver
- Add interrupt support to bdev/nvme module

Work in progress

• Parts will start landing in v24.09 release

NVMe over Fabrics

- Authentication support (v24.05)
 - Target and host driver support
 - Pluggable keyring library
- Namespace masking (v24.05)
 - Limit namespaces in controller based on hostngn
- Discovery referrals (v24.01)
- Custom reservation handlers (v24.01)
- Better NVMe feature passthrough
 - Enable NVMe-oF hosts to observe NVMe-specific parameters
 - FDP (v24.05)
 - optperf, atomic (target v24.09)

Logical Volumes and RAID

Logical Volumes

- Extend Ivolstore at runtime
- Better unmap support
- Shallow copies

• RAID

- Progressing towards a REAL RAID stack
- RAID-1
- RAID-5F
- On-disk metadata
- Rebuild

Tracing

Tracepoint owners

- Map event to specific bdev, TCP connection, NVMe queue, etc.
- Enable tracing for user-created pthreads
- New tracepoints and related features
 - Current queue depth for existing nvme, bdev, nvmf IO tracepoints
 - Sock (TCP) layer tracepoints
 - Map events to spdk_thread name

NUMA

- SPDK has ignored NUMA to date
- Increased focus with chiplet designs
- NUMA optimizations in progress
 - Allocate PCIe CQs from socket-local memory
 - Map NVMe host controller (PCIe, TCP, RDMA) to socket ID
 - Map bdevs to socket ID
 - Map NVMe target controller (TCP, RDMA) to socket ID
 - Allocate benchmarking (fio, SPDK tools) buffers based on socket ID
 - Plumb iobuf to support per-socket buffer pools
 - Allocate target application buffers based on heuristics (I/O type, nvmf socket ID, bdev socket ID)

Thank You