

PCle Gen5 Fabric and Management

Brian Pan H3 Platform

Table of Contents

- PCle Architecture
 Composable Architecture and Fabric Manager
- PCle Fabric Features Composable GPU and Management
- Fabric Types Hierarchical and Fabric Topology
- Usage Cases Different Fabric Application
- Lesson Learned Different Fabric Application

Architecture: Composable PCIe System

Chassis Top View

BMC and mCPU

Chassis management and Device management

PCIe Switches

2 Broadcom PCle 5.0 switches

Key Software Specification

Features

- GPU composability
- Device surprise add and remove
- Device peer-to-peer (GPU P2P)
- PCIe port configuration (Host or Device)
- Performance and error monitoring

Management Interface

• Redfish®, RESTful API, GUI

Fabric Topology: PCIe Hierarchical Switches

The host can be connected too the first -layer switch ONLY.

NVMe

Ē.

NIC

- **GPU**: Graphic Processor Unit
- NVMe: NVMe SSD ٠
- **Network card** : Ethernet/Infiniband network card

Usage Case of PCIe Hierarchical Switch: GPU for AI and Inference

Fabric Topology: PCIe Hierarchical Switches with Fabric Capability

The host can be connected to any switch. The switches are in mesh topology.

- PCIe Fabric Switch
 Capability
- : Hierarchy-Based Routing Switch with Fabric

Usage Case of PCIe Hierarchical Switch with Fabric: Scale Up GPUs or PCIe Device Hub

Lessons Learned: Server

Server bus number and memory address

Not enough bus number and memory addressin server slots

- a. BIOs bus allocation on each PCIe CEM slot
- b. BAR0, BAR1, BAR2 memory address

Lessons Learned: Re -timer

Signal integrity, bifurcation, reset, thermal

Re-timer should test against with server slots for signal integrity

Bifurcation, clock, and reset design

Lessons Learned: PCIe fabric c

GPU reset when hotplug g

When re-provisioning the GPU, the GPU should be reset through out-of-band or inband secondary bus reset

GPU peer to peer setting when re -provisioned

GPU P2P setup in the PCIe switch fabric

- Single GPU device
- GPU with internal PCIe bridge
- NVMe and NICs

Lessons Learned: Devices

PCIe device in one card

Single GPU

- Multiple GPUs in a single device (GPU and PCIe switch)
 - Multiple devices in a single device (GPU, PCIe switch, and NIC)

Lessons Learned: Devices s

Device power and cooling g

GPU up to 1KW and the NVMe is only 20W

Form factor of PCIe device

FHFL, HHFL, HHHL, U.2, E3.S.

Lessons Learned: Management and APPI

Management path

PCIe device management path

- Ethernet (Data or Management path)
- PCIe management
- I2C out-of-band

Lessons Learned: Management and APPI

Orchestration and API

Many consortiums are working on the standard orchestration and API for the composable solutions

