GPUs as Data Access Engines Thursday Aug 8, 2024, 8:30-9:35am session

CJ Newburn, Distinguished Engineer, NVIDIA GPU Cloud

¹ ©2024 Conference Concepts, Inc. All Rights Reserved

- Scaled data sets won't fit in the memory of one GPU or even of many nodes \rightarrow use NVMe • Can't reach all data via loads and stores \rightarrow need new API
-
- New workloads that are bottlenecked on data access vs. compute
- Key-value/object stores are gaining traction as a way to access data \rightarrow custom APIs for objects
- Too much data for apps to track \rightarrow serverless, with dataset services, orchestration

Trends

New considerations as we scale up and out

A new class of problems on scaled data

• Huge data that are too big to reach with loads and stores Partitioning, caching, communication complexity • NVSHMEM for memory; something more for mem+storage • GPUDirect Async Kernel Initiated Storage, not just GDS Example: graph traversal based on reading node data

GPU becomes not only a compute monster, but also a fine-grained data access engine Both use O(100K) threads to accelerate, compute or IO

- Error handling at scale is problematic \rightarrow new API family that covers data anywhere • Accesses are initiated from the GPU (or CPU) • Vast volume of accesses, 1+ per GPU thread
	- \rightarrow greatest benefit with fine granularity

Requests

How do we most efficiently squirt O(100K) requests/responses through the PCIe pins?

Similarity result: The most simila documents are

New class of applications → new programming model Fast, sparse access to massive data

- **GPU becomes not only a compute monster but also a data access monster**
- Huge volume of fine-grained accesses from each of O(100K) GPU threads
- For huge data sets, you eventually can't do load/store \rightarrow this is the new API for data of unbounded size in memory/storage
- NVMe brings compelling TCO vs. HBM/DRAM
- Relieve the "out of memory" management for greater
- productivity

• Open 1T edge graph problems to those with only 1 GPU or 1 node

Graph analytics and Graph neural networks (100GB-100TB) Nodes/edges/embeddings

WholeGraph, cuGraph, …

\cdot [1, 0, 3, 5] \cdot [9, 4, 6, 9] $[4, 6, 2, 5]$ $[1, 3, 6, 8] \cdot$ $[6, 8, 6, 1]$ $[7, 0, 3, 5]$ \mathbb{E} | 1, 4, 6, 9] documents, or videos $\begin{bmatrix} 4, 6, 2, 4 \end{bmatrix}$

Data analytics (100GB-1PB) select row/column based on compute

RAPIDS

Vector Search (up to 40PB) specialized algos on embeddings and files

cuVS

RAG/VectorDB (>600GB) ANN algos on embeddings

Text query

cuVS

Emerging application domains that motivate a new programming model

Applications

- -
	-
	-
	-
- -
	-
-
- -
	-
- -
	- -

Graph Neural Networks (GNNs) – graph + feature store Neither the graph nor the data fit into a GPU for 1T edges High-value embeddings for entities and relationships Key parts of recommendation and bad-actor detection systems GNNs improve accuracy over other embedding types Vector search/vectorDB – vector store

[NeMo Retriever,](https://nvidianews.nvidia.com/news/nemo-retriever-generative-ai-microservice) NVIDIA RAFT in RAG-LLM

Data deduplication to prep for foundational training of trillion-token LLMs LLM fine-tuning joint with GNN embeddings benefits from huge key value service Graph analytics available in cuGraph:

Personalized pagerank, community detection on huge graphs Distributed sampling and partitioning for GNN models Common need: simple management of data larger than physical memory of host + device Avoid OOM (Out of Memory) errors

- Typically requires caches, partitioning, multi-GPU/multi-node communication Needs to be re-created for each application unless we have a common solution

-
-
-

Characteristics and usages across scale

1 GPU discrete 1-10TB, tabular data Local NVMe

Data science

Exploratory data analysis Model creation Train a couple of models overnight

scale

system

domain

dob

model

256 GPU SuperPOD 100+TB, transaction graph TOR NVMes or RDMA filers

Anomaly detection, RecSys FSI, cybersecurity, retail

Load and build graph Sample and train Inference to create embeddings

8 GPU HGX 20-40TB, 3D proteins Local or TOR NVMes

Molecular generative AI BioNemo, Pharma

Input knowledge graph Build hetero molecular graphs Molecular diffusion inference Docking analysis

7

Application layering example

• cuGraph service implementation changes, application does not • Now training can proceed independent from data size • No need to manage memory system, caching, partitioning, big improvement in maintainability for GNN training at scale

Trained Model

Delivering new capabilities through existing stack

Embedding Vector DB

Recommendation System

SCADA

Server

GPU-initiated scaled data architecture

GPU becomes an autonomous highly parallel data access engine

Request, initiation, service, and consumption all happen within a GPU kernel Requests are processed in a trusted, privileged server with access to storage Features a key pillar of Magnum IO: flexible abstraction

GDA KI Storage enables data IO accesses that are both initiated and triggered by GPU

-
-
-

Simplified architecture

3 views: user, tiered, backing storage

Implications

-
- \uparrow separation of data from work \rightarrow tiered/hierarchical locality with data orchestration
- Provide easy onramp in addition to near-full control • Handle fragility of unreliable storage and its error conditions Retain cost transparency - queriable cost, if not directly implied by API
- Could be new for SOL but must also support legacy Set of non-owning views; vernacular data collections vs. just mdspan
- Dev/tuner/DC admin specify preprocessing and transformation down in data network
	- Both config this might happen, between whom and how And on demand - get me this

• Huge, distributed data • Abstraction over complexity • User interfaces • Provide usage hints

Rethinking interfaces for the modern data center Internal name: **SCADA for scaled accelerated data access**

- -
	-

- **Scale:** Single API for data access independent of scale

• Fit where you couldn't before, e.g. 10 TB in one node, avoid OOM worries • Transparently scale both data set size and size of compute cluster - **Higher abstraction:** "Serverless access" is the way of the modern data center • Front end: handle caching, avoid partitioning, communicate among multi-GPU/multi-node • Back end: app accesses dataset X, relegates details of where/how data is stored • Data platform tools could manage curation, locality, sharding, staging • Acceleration with best use of GPU threads, memory management, and topology-tuned communication - **Easy enablement:** Low-level interface that leaves application layers unchanged - **Fundamentally-low TCO:** Reduce the cost of storage data • Huge data \rightarrow huge memory \rightarrow huge cost

• Applications of low computational complexity use HBM only for memory vs. compute • Cheap NVMes make datacenters more efficient

-
-
-
-
-
-
-
-

Two SCADA research prototypes: BaM, GIDS

Preparing for trial integration into production stacks

• **Big accelerator memory, BaM**: "GPU-Initiated On-Demand High-Throughput Storage Access in the BaM System Architecture", ASPLOS 2023:

GIDS: "Accelerating Sampling and Aggregation Operations in GNN Frameworl with GPU-Initiated Direct Storage Accesses", VLDB'24:

- Follow-on to an earlier OSS academic prototype
	- <https://doi.org/10.1145/3575693.3575748>
	- <https://arxiv.org/abs/2306.16384>
- Currently a functional prototype, first used by cuGraph
- Familiar programmer abstractions
- GPU cache aggregates to a smaller number of IOs
- Optimizing IO queue interactions for O(100K) GPU threads

• Easy integration into widely used package manager

Templated C++ header library, specialized for app objects

Progression of SCADA services Start with simpler cases, grow over time with your input

• Header-centric client library in front of opaque implementation • Memory managed by app, SCADA provides APIs to allocate and free • Start with a simple but critical service like swap, then extend • App on CPU reads all data from storage into GPU, as it always has • GPU threads write data into SCADA and read it back later • Relieve out of memory (OOM) avoidance with unbounded capacity

- Common infrastructure
	-
	-
-
-
-
-
- API for contiguous arrays
-

• We'd love your feedback for the next APIs and services

Data lookup acceleration enables higher throughput by reducing the IO bottleneck to (feature) data • Transparent data reuse benefit: cache bw (400-600 GB/s) >> PCIe into the GPU (24 GB/s for Gen4) • IO processing (16 MIOPs) keeps up with PCIe-saturating NVMe IOPs rates (6 MIOPs for Gen4) • GPUs are latency tolerant - HW context switching covers miss latency

Request

NVGNN Request: 45M IOPs Consume: 180GB/s

GPU tput on a single A100 6910 CUDA cores @1.41GHz

Transfer size = 4KB

GPU batch processing

Performance results: the GPU as a data access monster

Bottleneck is NVMe and pin bandwidth, not GPU code

Random reads mostly saturate PCIe Gen4 with 4 Gen4 drives Initial Big Accelerator Memory (BaM)* research prototype validates perf trends

▪ UIUC-NVIDIA BaM replaces the NVMe driver to enable GPU-initiated IO transfers to/from NVMe ▪ 6+ Million IOPs, 23+ GB/s on 4KB random reads ▪ 0% CPU utilization

▪ Microbenchmark to stress storage through BaM ▪ Scales GPU requests at 4KB against storage devices and measures operations/s and GB/s in 4KB xfers. ▪ 6 drives vs. 4 bumps up MIOPs and GB/s slightly

BaM and GIDS are UIUC-NVIDIA Research prototype projects and not intended for general release.

GIDS with IGBH-Full training. NVMe performance results measured by Micron's Data Center Workload Engineering team, baseline (mmap) performance results measured by NVIDIA's Storage Software team on a similar system. Systems under test: Gen4: 2x AMD EPYC 7713, 64-core, 1TB DDR4, Micron 9400 PRO 8TB, NVIDIA A100-80GB GPU, Ubuntu 20.04 LTS (5.4.0-144), NVIDIA Driver 535.113.01, CUDA 12.2, DGL 1.1.2 Gen5: Dell R7625, 2x AMD EPYC 9274F, 24-core, 1TB DDR5, Micron Gen5 SSD, NVIDIA H100-80GB GPU, Ubuntu 20.04 LTS (5.4.0-144), NVIDIA Driver 535.113.01, CUDA 12.2, DGL 1.1.2 Work based on paper "GPU-Initiated On-Demand High-Throughput Storage Access in the BaM System Architecture" <https://arxiv.org/abs/2203.04910> and using <https://github.com/ZaidQureshi/bam>

Graph Neural Network Training Using GIDS with BaM vs. Baseline

Sampling ■ Feature Aggregation ■ Training

Explicit storage IO is 25x of mmap, faster media is better

Direct GPU access vs. faulting through CPU to storage with BaM and high-performance Gen5 NVMe™ brings 25+x for GNN Training

400

Workload Time (seconds, smaller is better)

Feature Aggregation depends on SSD performance It's 99% of execution time in the baseline, 80% of tuned Sampling and training depend on GPU performance

GNN on GPU induces queue depths 10-100x of CPU Investigated with Micron NVMe™ IO Trace tool

Using **GPU-initiated direct storage (GIDS)** framework

A trace of the IO pattern at the SSD level shows interesting behavior:

GIDS with IGBH-Full training. NVMe IO trace measured by Micron's Data Center Workload Engineering team. System under test: 2x AMD EPYC 7713, 64-core, 1TB DDR4, 4 Micron 9400 PRO 8TB, 1x NVIDIA A100-80GB GPU, Ubuntu 20.04 LTS (5.4.0-144), NVIDIA Driver 535.113.01, CUDA 12.2, DGL 1.1.2 Work based on paper "GPU-Initiated On-Demand High-Throughput Storage Access in the BaM System Architecture" <https://arxiv.org/abs/2203.04910> and using <https://github.com/ZaidQureshi/bam>

- Near drive's max IO performance
- 10-100x SSD queue depth wrt CPU
- 99% small block reads

GIDS with BaM presents a challenging SSD workload: **High-Performance NVMe is Required**

• GPU-initiated, dynamic, per thread • Fine-grained, high throughput • Could be 4B-4KB • Unbounded data size Data access bound

Suitability

-
- Each GPU thread dynamically forms and makes its own request If you know the batch ahead of time, use GPUDirect Storage
- If coarse, you can saturate pins with very few threads
- Can't reliably fit in GPU high-bandwidth memory If it could, you could just stick with load/store
- Focus is on data access as a bottleneck If compute bound, HBM in very many nodes is free

Benefits

Scale • TCO • Performance

- Fit problems into a small number of GPUs by spilling into NVMe storage • Even if somewhat slower (e.g. 1 NVMe) – what's your slowdown threshold?
- For a given perf level, offer greater cost effectiveness with NVMes vs. HBM or DDR
- As we tune over time, potentially improve perf • Limited by PCIe bandwidth into GPUs and # of drives

- Storage technologists
	- Give us lots of IOPs!
	- Pack in fine-grained transfers across PCIe
- App developers and users
	-
	-
	-
	- Share need for more data capacity than will fit in GPU-CPU memory for compute • Specify kinds of services of interest, e.g. array, swap, key-value, VectorDB, dataframe? • Specify details on product stack support, deployment models • Infrastructure developers
	-
	- Layer on SCADA as has been done for NVSHMEM, e.g. Kokkos perf-portable framework • Look at new venues for fine-grained interleaving of compute and communication, e.g. LLNL

Call to action for SCADA Come help chart the future of turning the GPU into a data access engine