

Post Quantum Cryptography, hardened secure solution for the next 20 years

dirror_mod.use_y = True mirror_mod.use_z = False elif _operation == "MIRROR mirror_mod.use_x = False mirror_mod.use_y = mirror_mod.use_z

#selection mirror_ob.select modifier_ob.se bpy.contert

A Global Supplier of Advanced Memory Solutions

- Quantum computing an overview
- CNSA 2.0 and market trends
- Merits of implementing PQC in nonvolatile memories

Quantum computer

- IBM, Google developing early examples
- Startups showing promise
- Still in early stages
- Solves some problem uniquely
 - Chemistry, material simulation
 - Blockchain
 - Breaking cryptography

The 2030 challenge: Post Quantum Cryptography

PQC: Post-Quantum Cryptography

- Cryptography after Quantum computing become available

Current security can be made vulnerable by 2030; RSA, ECC

Why do high-security systems need to be prepared?

- Adversaries are harvesting encrypted data now, for processing later with quantum computer
- Products launched today may remain in service by 2030

Why Post-Quantum Cryptography become important?

- 2030 is the year when traditional cryptography may become inefficient
- For instance, platforms with more than 7y life cycles introduced in 2024 will become vulnerable after 2030
- US NSA and UK NCSC selected PQC algorithms for digitally signing firmware and software updates
- Software and firmware OTA signing: begin transitioning immediately, support and prefer CNSA 2.0 by 2025, and exclusively use CNSA 2.0 by 2030.

2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033	
Software/firmware signing	ounnunnun 📀 📀
Web browsers/servers and cloud services	
Traditional networking equipment	
Operating systems	
Niche equipment	
Custom application and legacy equipment	

CNSA 2.0 compliant systems markets

- US Gov't agency 'National Security System'
- Infrastructure installations may follow
- □ Financial markets may follow

Security implementation on NVM vs host or Secure Element

- Secure Element can be BOM cost adder
- Software solutions: performance and certification / approval processes
- Secure NVM may leave no footprint change no PCB change
- Certification can be lengthy and expensive
 - For pre-certified secure NVM, vendors can apply for composite certification incremental certs
 - Revision of SE code may trigger recerts
 - For host-based system, product update to new processor triggers recerts

Challenges in promoting security

- □ How much does it cost?
 - Depends, from 'checkbox' solution to full implementation
- What is the value?
 - How do you value insurance?
- □ Will market pay for it?
 - No; until they need it
- Am I forced to adopt?
 - When enough incidents take place

