OCP L.O.C.K.

Layered Open-source Cryptographic Key-management

Amber Huffman, Principal Engineer, Google Lee Prewitt, Director Cloud Hardware Storage, Microsoft

SAMSUNG KIOXIA

Life of a data center storage device

Drive arrives from the supplier

Drive is given user data to store

Drive is decommissioned

Decommissioning drives

- The physical drive is leaving the data center
- User data cannot be permitted to escape

Default policy: destroy the drive

- Safest way to ensure bits on the drive don't escape
- Produces significant e-waste
- Impacts bottomline of drive owner
 - Inhibits second-hand markets

One technique: overwrite

- Write over every piece of data held within the drive
- Every portion of the drive must be overwritten, before the drive is allowed to leave in one piece

Multi-pass overwrite
/

Problem: drive failure

- If *any* portion of the drive cannot be overwritten, erasure fails and the drive must be destroyed
- Ergo, we still destroy a lot more disks than we'd like

Problem: NVMe page management

- On NVMe drives, bad pages are hidden from the host
- The host cannot even address such pages
- Hidden pages may have user data

Multi-pass overwrite
//

Solution: drive encryption

• Ensure all data on the drive is encrypted to a key

Solution: drive encryption

- Ensure all data on the drive is encrypted to a key
- Forget the key

NVMe self-encrypting drives

- The drive manages encryption keys
- Allows granular mapping of keys to address ranges

NVMe self-encrypting drives

- The drive manages encryption keys
- Allows granular mapping of keys to address ranges
- Allows granular mapping of keys to users

Risk: drive theft

- Keys must be erased before the drive leaves the DC
- If the drive is stolen, the keys survive
- A determined adversary may obtain user data

U	
	C

Mitigation: key material held outside the drive

- All media keys protected with a secret the drive does not have
- If the drive is stolen, the 'root secret' remains safe
- By extension, all media keys remain safe

How in practice: admin credentials

- Set up a strong admin password
- Hold the password off-drive, such as in a TPM
- Rely on the drive to transitively protect all media keys with the admin password

A working implementation

Stored persistently within drive

Broken implementation #1

Stored persistently within drive

Broken implementation #2

Stored persistently within drive

Broken implementation #3

Stored persistently within drive

Overall problem

- Storage key management is critical to get right
- Threat model is significant
 - Drive theft, supplier infiltration, hardware attacks
- Implementations vary in quality
- Auditing implementations is a chore
 - Post-deployment fixes are herculean

	User 1
	User 2
	Admin

Recall: Caliptra

- Silicon roots of trust are critical components in data center hardware
- Caliptra is an OCP specification for an **internal root of trust IP block for SoCs**
- An open source implementation has been delivered at CHIPS Alliance
 - Ensures consistency, transparency, openness and reusability
- At this level, security should be boring

Introducing: OCP L.O.C.K.

- A project to deliver an open implementation at CHIPS Alliance, leveraging and following Caliptra
- Scoped specifically to storage devices
- Provides key management services to the drive and host, utilizing services from Caliptra

	User 1	Ь
	User 2	Н
	Admin	P
	,	
L.O.C.K.		

Layered Open-source Cryptographic Key-management

AES crypto engine (existing)

Performs line-rate encryption of data as it enters and exits the storage device

Controller firmware (existing)

Manages users and wrapped keys

KMB (new)

Generates keys and protects them at rest

Binds keys to externally-injected seeds

KMB (new)

Securely communicates media keys to the crypto engine

Caliptra

Provides attestation services for KMB

Provides root secrets for media key encryption

Trust boundary

Caliptra + KMB removes system management and control interfaces from the data-at-rest TCB

Trust boundary

L.O.C.K. enables I/O path innovation, while maintaining a common, minimal TCB

KMB key hierarchy

Generated secret, visible only to KMB

Persistently-stored data

Summary and Call to Action

- L.O.C.K. will deliver a common IP block for storage devices
- L.O.C.K. ensures secure management of media keys

Call to Action:

- Look for the 0.5 spec later this summer
- Join CHIPS Alliance if interested in collaborating on the implementation

L.O.C.K.	

Thank you!

