SANISUNG

SSD Implementation of
Key Per IO

Dan Helmick

Principal Architect

Overview of Key Per 10 (KPIO)

Host Submits a Command

SQE provides Key Tag

Drive

Potentially different Key Tag for every 10

Maintains separated security boundary

Confirmms KEK

Encrypts/Decrypts Data with MEK

Acronyms

KEK = Key Encryption Key

KPIO = Key Per IO

MEK = Media Encryption Key
NS = Namespace

SQE = Submission Queue Entry
UID = Unique ID

SAMSUNG

SSD Controller

| cmd |
Host — = ParSi .

X Securitﬂ
Core \)

Encrypt

Decrypt

MEK[O]
MEK(T] KEK[O]
MEK[2]
MEK[3] |
MEK[4]

KEK[T]
MEK[5]

v MEK[6]

Host submits SQE to
drive

SSD Parses SQE

Read Command
proceeds and
eventually returns the
Read Data

NS ID and Key Tag are
passed to the
Security Core

NS ID and Key Tag are
mapped to KEK and
MEK by the Security
Core

KEK status is
confirmed

Read Data arrives at

the Encryption Engine,

and Security Core
provides correct MEK

Decrypted data is
sent to the Host

KPIO Nominal Read Flow Detalil

SQ Entry

Read OpCode

SSD Controller

NS ID § cmd

PRP/SGL @l Porsing
pointers

Starting LBA

Number of
LBAs

CETYPE = KPIO

CEV =Key Tag

Decrypt

Security Core

MEK

MEK[O]

MEK[2]

v MEK[6] 1

MEK(T]

MEK([3]
MEK[4]

MEK[5]

SAMSUNG

SAMSUNG

KPIO Nominal Write Flow Detail

1. Host submits SQE to SQEntry SSD Controller
drive Write OpCode R i
2. SSDParses SQE NS ID 4,,,}_, __Write Cmd
5| qusmg
3. NSIDandKey Tag are PRP/SGL ' ' S -
passed to the pointers r B N i
Security Core Starting LBA
4, NS ID and Key Tag are Number of
mapped to KEK and LBAs
MEK by the Security
Core
5. KEKstatusis EE\T/YP; - KTPIO Security Core Mapping
. =Key ld
confirmed Y 199 = -
6. Write Command EK inde
proceeds to initiate MEK
data transfer to the \ MEK[O]
SSD \ MEK[1] ‘
7. Write Data arrives at A s
the Encryption Engine, MEK(3]
and Security Core MEK(4) |
provides correct MEK | MEs)

MEK[6] 1

8. Encrypted data is
stored in the NAND

MEK Injection

1.

2.

3.

4,

Get MEK
* Input: KEK_UID

Key Management Server uses
KEK to encrypt a MEK

+ Output: Wrapped MEK
App injects MEK to the SSD

+ Input: KEK_UID, Wrapped MEK,

Key Tag
SSD Uses KEK to decrypt the
wrapped MEK

« SSD's MEK and KEK table is
potentially very sparse

Host

SAMSUNG

SSD Controller

Cmd
Parsing

KEK
KEK[O]
KEK(T]
KEK[2]

KEK[3]

MEK
MEK[O]
MEK[1]
MEK[2]
MEK[3]
MEK[4]
MEK[5]

MEK[6]

Key Management Server

MEK
MEK[0]
MEK(T]

MEK[2]

MEK[3]

MEK[4]
MEK[5]

MEK[6]

Security Core

KEK

KEK[O]

KEK[1]

Dan’s Expectations of Commmon Direct
Attached Configurations

1st generation drives will be used to enable
infrastructure and familiarize end customers

« Nuanced and exotic uses can be integrated Encrypt

into this base implementation
Decrypt

1 KEK per Drive
« Multiple KEKs seems most useful for NVMe-oF

MEK Slots == TCG OPAL key slots
« Today's use-cases for TCG OPAL use up to
1024 keys
KPIO enables a dynamic swapping of keys
extending the utility of the existing slots

SAMSUNG

Security Core

MEK

Data

MEK[100]

MEK[101] KEK[O]
MEK[17]

MEK[5]

Dan'’'s Predicted Future Extensions of

Direct Attached SSD Use-Cases

Supporting 2 or more KEKs per SSD
+ Enables swapping KEKs
+ Enables drive reuse
+ Enables Sustainability

Using KEK to encrypt MEKs in an extended DRAM
+ No Host or spec changes required for enablement
+ Maintains low latency for those MEKs in SRAM
+ Maintains security sub-drive boundary while enabling general DRAM
sharing with unsecured SSD components
+ Increases latency variation while swapping MEKs from DRAM into SRAM
+ Latency Variations are commonly unacceptable in Enterprise SSDs

Permanently associating Key Tag to NVMe attributes
+ Associations enable secure legacy tenants without requiring population
in every SQE
+ Example associations: NS or NVM Controller
+ In a Multi-Tenant environment, enable the association to be controlled by:
+ Parent - Legacy enablement
+ Child - Data ownership

Security Core

MEK

Encrypt

Decrypt
MEK[100]
Background MEK MEK[101] KEK[0]

swapping into MEK[17]

limited SRAM slots MEK[5]

Drive Memory

SAMSUNG

Data

— SRAM

DRAM

Extending KPIO to Secure LM Data Transfer

Existing Live Migration (LM)
- Virtual Machines (VMs) are secured Sﬁ‘;‘;’e Source Controller
» Processors: Trusted Execution Environments (TEE)
- PCle: Integrity and Data Encryption (IDE) VM Child NVM

Controller

+ Storage: OPAL and KPIO
+ VM Manager (VMM) and network data transfers are

i

unquantified risk
Extending KPIO into LM
- Allows different ECCs, CRCs, and MetaDatas on Source
and Target SSDs
+ Assures Encryption Engine interoperation with MEKs
+ Key Management can be owned by VM Target Controller
+ Legacy VMs could be enabled by a Key association

+ Prevents VMMs or Networks from viewing data

Items to solve during standardization E
« Preferred Encryption Tweak during the VMM data E——
yp g v Child NVM ‘
movement controiier

?7??

SAMSUNG

Source NAND

Child
Data

Target NAND

Child
Data

SAMSUNG

Conclusions

KPIO is an extensible feature set enabling better end customer security

1st generation KPIO SSD enablement

Centered around 1 KEK
Uses KPIO to dynamically swap MEKs and extend utility of existing TCG OPAL key slots

Future KPIO Extensibility Ideas
Assignment of Key for legacy tenants
Live Migration of VM data while maintaining encryption
Encrypted Snapshots

Thank You

