

Infrastructure AI technology Accelerated by Advanced Memory & Flash Technology

Distinguished Engineer & CTO

Supply Chain Engineering IBM Infrastructure

Outline

- 1. Infrastructure technology driving forces
- 2. Si technology & Advanced Packaging
- 3. Memory Technology
- 4. Flash Storage Technology
- 5. Power subsystem & Interconnect
- 6. Summary

Infrastructure Technology – Driving Forces

Performance

CPU/GPU Si scaling, Heterogeneous integration

Low latency - AI training & inferencing

Bandwidth – Memory, Interconnect, Optical Transceivers, PCIe Gen 5/6

Density – Memory, Storage Capacity &

I/O Density

Quality & System Resilience

Design for quality

Manufacturability & Reliability

Sub Tier Quality

FW Quality

Sustainability

Power Consumption TCO

Carbon footprint

Security

Supply Chain Security

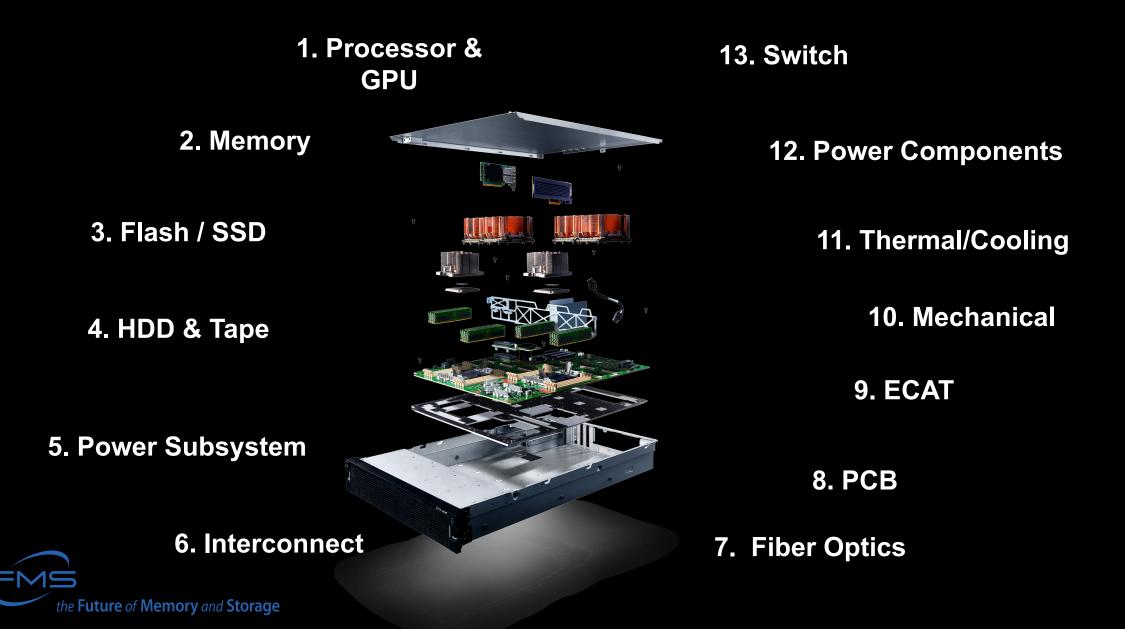
Product Security

Ransomware detection

Supply Chain Resilience

Geo-political factors

Component design


Cost

Semiconductor scaling

CXL disaggregated infrastructure

Infrastructure – Building Blocks

AI placing huge demands to Infrastructure

100x more model parameters

AI training and inferencing will require highly intensive processing of simultaneous computations

7x greater computational throughput

Elaborate data-intensive models will exponentially scale the rate of storage, memory and processors transactions

10x growth in newly-generated AI data

The iterative supply chain of synthetic, annotated and generative data that must be stored, secured, managed

50x

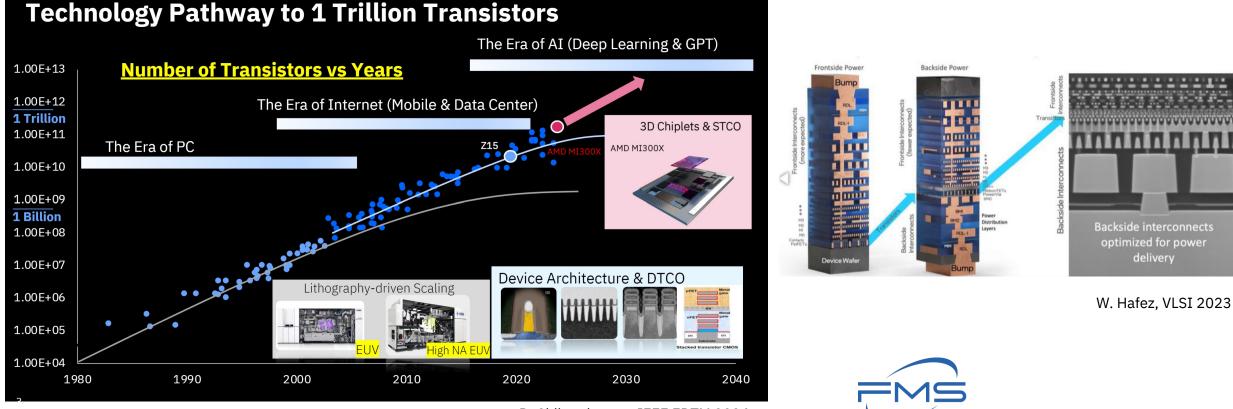
performance degradation from distributed data

Driving the need to dynamically distribute AI models to where the data lives to achieve near-zero latency and scalable responsiveness

7x faster security threat lifecycles

Bad actors are using AI to identify new data and AI model vulnerabilities and to speed iterative attacks

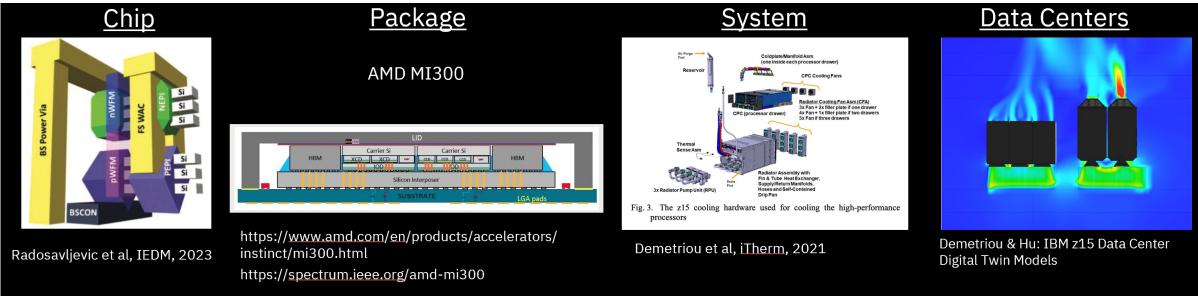
2x


more energy consumption

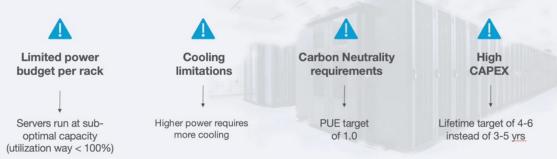
As AI models rapidly consume more and more data, iteratively trained longer and longer and require faster and faster inferencing cycles

AI fueling Si Scaling & Advanced Packaging

- Vertical transistor architectures & back side wafer interconnects
- 3D Chiplets, High Bandwidth Memory TSV stacked packaging
- Al is driving all aspects of Compute: >40 Peta FLOP performance, 48GB HMB4 cube with 16High TSV stack

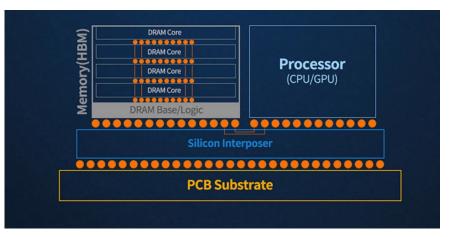


D. Chibambarrao, IEEE EDTM 2024


the Future of Memory and Storage

AI stimulating Power & Thermal Solutions

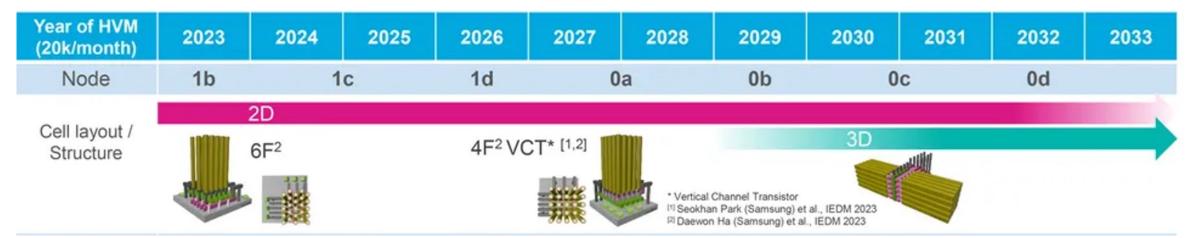
- Overall performance is limited by electrical power allocation
- High power costs
- Sustainability is carefully monitored
- High power \rightarrow shorter lifetime


 Al intensive workloads: more Si processing devices > more interconnects > more memory

- Stacked and Packed: MORE POWER & HEAT generated
- Al requires **System level solution** solving components independently cannot produce optimal design point
- Performance/power driving new levels of Si technology, Chip mechanical integrity & reliability => Thermal Solutions are fundamental

Memory Technology – AI directions

- Training and Inferencing
 - GenAI driving highest memory capacity & Bandwidth
 - Growth of model parameters, Need to store Large Language Model
- HBM (High Bandwidth Memory)
 - TSV (Thru Si Via) stacking allows layers of Si die to be stacked on top of each other
 - Allows large number of memory chips to be packed into smaller volumetric space reduce the distance that needs to travel between the Processor/GPU to memory (e.g., HBM4 max capacity 48GB, Max B/W 1.65TB/s, 16H TSV)
 - Lower power consumption reduce the amount of power needed to transfer data between memory to processor
 - HBM can reduce heat generated by memory enables overall system performance & reliability



Memory Technology Scaling – AI viewpoint

- DRAM transistor scaling 6F2 planar > 4F2 vertical transistor, 3D-DRAM enabling i) device performance scaling, ii) bit cost scaling, iii) transistor power scaling, iv) density scaling
- Wafer bonding technologies to optimize array efficiencies, cell performance
- Memory intensive AI workloads, power scaling, thermal engineering, new reliability mechanisms

Flash Storage Technology – AI Infrastructure

1. Data volume

- Al workloads require massive amounts of data for ingestion, training, validation and inference
- Gen AI LLM driving increased flash memory capacity & Bandwidth
- 1-2 Tb QLC enabling high capacity data lakes
 - Data lakes more read intensive with lower write requirements

2. Data Velocity

- The rate at which data is generated and processed increasing tremendously for AI.
- Real time analytics & decision making critical for finance, healthcare, cloud/edge.
 - High speed data ingestion, processing and retrieval critical to enable real-time AI applications

3. High Performance

- AI workloads require Flash enabled high-performance storage meet computational demands of training complex models and processing large data sets
- Low latency access to data, and high throughput to support intensive AI workloads and maximize compute infrastructure investments. Random access latency performance key for training & inferencing

4. Data Efficiency

- Critical for optimal performance, energy conservation for accelerated training and inference, scalability and reliability.
- Power and space efficient storage important for overall infrastructure efficiency & TCO

Flash Technology Scaling – AI implications

- Growing #of layers enabling 3D NAND manufacturers to drive Density & \$/GB scaling
 - 3D-NAND scaling 3xx layer MP in 2025, 1000 layer tgt'd by 2030
- Z-height reduction critical for continued 3D-NAND scaling Channel etch control, cleaning, stress management, die thinning & stacked package quality
- **3D-NAND architecture** block size, # of planes, page size
 - Cell current challenges resulting in larger block size vs 3D-NAND generation complexity in wear leveling & overall flash management
- Wafer fab process & W2W bonding technology
 - Wafer bonding allows flexibility in optimizing cell performance, array efficiency, and interface speed
- Key performance parameters tRead, tProg, tBERS key in driving performance
- Reliability endurance, data retention, read disturb vs 3D-NAND scaling

the Future of Memory and Storage

Power Subsystem

- Al infrastructure requires higher power capacities > 3000 Watt ratings to meet Al centric power requirements
- Power Density wide band gap GaN technology best solution for high density & efficiency
- Energy efficiency more efficient PSU & DC/DC converter designs to minimize energy waste and TCO
- Reliability IBM SystemZ requires eight 9 resilience
- **Redundancy & fault tolerance** ensure continuous operation and data processing via redundant PSU configurations and DC/DC converter designs
- Smart power management real time monitoring/telemetry, power usage tracking

Interconnect

- High B/W: Data intensive AI workloads requiring massive computing power and storage capacity
 - 224 Gbps-PAM4 development pushing the laws of physics for both semiconductors and interconnect
 - Pushing limits of design & manufacturing
- Co-development of multiple disciplines– Hardware, architecture, connectivity, mechanical integrity, signal integrity

Summary

- **1.** Al demands to Infrastructure
 - Model parameters, data size, computational thruput, near zero latency, scalability, security, Power consumption
- 2. Gen AI driving forces key technical directions
 - Si technology sub 5nm scaling, 3D chiplets, Heterogeneous integration
 - **Memory** High BW memory, DRAM transistor scaling
 - Flash Tb QLC, data lake application
 - Power subsystem high wattage, energy efficiency, fault tolerance
 - Interconnect high BW 224 Gbps PAM4

3. Power Consumption & Sustainability

- Increased power trends driven by Gen AI technology innovations needed across infrastructure
 - device scaling, power subsystem, thermal/cooling technology